File: basic-arithmetic.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (242 lines) | stat: -rw-r--r-- 6,342 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
; See the top-level arithmetic-3 LICENSE file for authorship,
; copyright, and license information.

;;
;; basic-arithmetic.lisp
;;

(in-package "ACL2")


(local (include-book "basic-arithmetic-helper"))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Extra
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; We include this definition here.  It will be used in
; inequalities and prefer-times.

(defun nonlinearp-default-hint-pass1 (stable-under-simplificationp hist pspv)
  (cond (stable-under-simplificationp
         (if (access rewrite-constant
                     (access prove-spec-var pspv :rewrite-constant)
                     :nonlinearp)
             nil
           '(:computed-hint-replacement t
                                        :nonlinearp t)))
        ((access rewrite-constant
                 (access prove-spec-var pspv :rewrite-constant)
                 :nonlinearp)
         (if (equal (caar hist) 'SETTLED-DOWN-CLAUSE)
             nil
           '(:computed-hint-replacement t
                                        :nonlinearp nil)))
        (t
         nil)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Facts about + (and -)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defthm commutativity-2-of-+
  (equal (+ x (+ y z))
         (+ y (+ x z))))

(defthm functional-self-inversion-of-minus
  (equal (- (- x))
         (fix x)))

(defthm distributivity-of-minus-over-+
  (equal (- (+ x y))
         (+ (- x) (- y))))

(defthm minus-cancellation-on-right
  (equal (+ x y (- x))
         (fix y)))

(defthm minus-cancellation-on-left
  (equal (+ x (- x) y)
         (fix y)))

; Note that the cancellation rules below (and similarly for *) aren't
; complete, in the sense that the element to cancel could be on the
; left side of one expression and the right side of the other.  But
; perhaps those situations rarely arise in practice.  (?)

(defthm right-cancellation-for-+
  (equal (equal (+ x z)
                (+ y z))
         (equal (fix x) (fix y))))

(defthm left-cancellation-for-+
  (equal (equal (+ x y)
                (+ x z))
         (equal (fix y) (fix z))))

(defthm equal-minus-0
  (equal (equal (- x) 0)
         (equal (fix x) 0)))

;; This rule causes trouble occasionally.  So I restrict its usage
;; to the simple case of two things being added by the syntaxp
;; hypothesis.

(defthm equal-+-x-y-0
  (implies (syntaxp (not (and (consp y)
			      (equal (car y) 'binary-+))))
	   (equal (equal (+ x y) 0)
		  (and (equal (fix x) (- y))
		       (equal (- x) (fix y))))))

(defthm equal-+-x-y-x
  (equal (equal (+ x y) x)
         (and (acl2-numberp x)
	      (equal (fix y) 0))))

(defthm equal-+-x-y-y
  (equal (equal (+ x y) y)
	 (and (acl2-numberp y)
	      (equal (fix x) 0))))

(defthm equal-minus-minus
  (equal (equal (- a) (- b))
         (equal (fix a) (fix b))))

(defthm fold-consts-in-+
  (implies (and (syntaxp (quotep x))
		(syntaxp (quotep y)))
	   (equal (+ x (+ y z))
		  (+ (+ x y) z))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Facts about * (and /)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Some of the following are actually proved in basics.lisp.

(defthm commutativity-2-of-*
   (equal (* x (* y z))
          (* y (* x z))))

(defthm functional-self-inversion-of-/
  (equal (/ (/ x)) (fix x)))

(defthm distributivity-of-/-over-*
  (equal (/ (* x y))
	 (* (/ x) (/ y))))

(defthm /-cancellation-on-right
  (equal (* y x (/ y))
	 (if (not (equal (fix y) 0))
	     (fix x)
	     0)))

(defthm /-cancellation-on-left
  (equal (* y (/ y) x)
	 (if (not (equal (fix y) 0))
	     (fix x)
	     0)))

(defthm right-cancellation-for-*
  (equal (equal (* x z) (* y z))
	 (or (equal 0 (fix z))
	     (equal (fix x) (fix y)))))

(defthm left-cancellation-for-*
  (equal (equal (* z x) (* z y))
         (or (equal 0 (fix z))
             (equal (fix x) (fix y)))))

(defthm equal-/-0
  (equal (equal (/ x) 0)
	 (equal (fix x) 0)))

(defthm equal-*-x-y-0
  (equal (equal (* x y) 0)
	 (or (equal (fix x) 0)
	     (equal (fix y) 0))))

(defthm equal-*-x-y-x
  (equal (equal (* x y) x)
	 (and (acl2-numberp x)
	      (or (equal x 0)
		  (equal y 1))))
  :hints (("Goal" :use
           ((:instance right-cancellation-for-*
                       (z x)
                       (x y)
                       (y 1))))))

(defthm equal-*-y-x-x
  (equal (equal (* y x) x)
	 (and (acl2-numberp x)
	      (or (equal x 0)
		  (equal y 1)))))

(defthm equal-/-/
  (equal (equal (/ a) (/ b))
	 (equal (fix a) (fix b))))

(defthm fold-consts-in-*
  (implies (and (syntaxp (quotep x))
		(syntaxp (quotep y)))
	   (equal (* x (* y z))
		  (* (* x y) z))))

;; Note that the inverse rule can also be usefull.
;; We cannot include both of them though since this
;; may cause looping.  The inverse rule:
;;
;; (defthm Uniqueness-of-*-inverses
;;   (equal (equal (* x y)
;; 		   1)
;; 	    (and (not (equal (fix x) 0))
;;	         (equal y (/ x))))
;;
;; is included in mini-theories.

(defthm equal-/
  (equal (equal (/ x) y)
	 (if (not (equal (fix x) 0))
	     (equal 1 (* x y))
	     (equal y 0))))

; The following hack helps in the application of equal-/ when
; forcing is turned off.

(defthm numerator-nonzero-forward
  (implies (not (equal (numerator r) 0))
           (and (not (equal r 0))
                (acl2-numberp r)))
  :rule-classes
  ((:forward-chaining :trigger-terms
                      ((numerator r)))))

;; We could prove an analogous rule about non-numeric coefficients, but
;; this one has efficiency advantages:  it doesn't match too often, it has
;; no hypothesis, and also we know that the 0 is the first argument so we
;; don't need two versions.  Besides, we won't need this too often; it's
;; a type-reasoning fact.  But it did seem useful in the proof of a meta
;; lemma about times cancellation, so we include it here.

(defthm times-zero
  (equal (* 0 x) 0))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Facts about + (or -) and * (or /) together
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defthm functional-commutativity-of-minus-*-right
  (implies (syntaxp (not (quotep y)))
           (equal (* x (- y))
                  (- (* x y)))))

(defthm functional-commutativity-of-minus-*-left
  (implies (syntaxp (not (quotep x)))
           (equal (* (- x) y)
                  (- (* x y)))))

(defthm reciprocal-minus-a
  (equal (/ (- x))
         (- (/ x))))