1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
; See the top-level arithmetic-3 LICENSE file for authorship,
; copyright, and license information.
;;
;; inequalities.lisp
;;
(in-package "ACL2")
(local (include-book "basic-arithmetic"))
(set-default-hints
'((nonlinearp-default-hint-pass1 stable-under-simplificationp
hist pspv)))
; ??? I'm not convinced we should be apply FC to RATIONALP hypotheses,
; but for now I'll go ahead and do so at times.
(defmacro fc (x)
x)
;; I need iff-equal for the next batch of theorems up till
;; <-*-right-cancel (which is in fact proved in
;; inequalities-helper.lisp).
(local
(defthm iff-equal
(equal (equal (< w x) (< y z))
(iff (< w x) (< y z)))))
(defthm /-preserves-positive
(implies (rationalp x)
(equal (< 0 (/ x))
(< 0 x))))
(defthm /-preserves-negative
(implies (rationalp x)
(equal (< (/ x) 0)
(< x 0))))
(defthm <-0-minus
(equal (< 0 (- x))
(< x 0)))
(defthm <-minus-zero
(equal (< (- x) 0)
(< 0 x)))
(defthm <-minus-minus
(equal (< (- x) (- y))
(< y x)))
(defthm <-0-+-negative-1
(equal (< 0 (+ (- y) x))
(< y x)))
(defthm <-0-+-negative-2
(equal (< 0 (+ x (- y)))
(< y x)))
(defthm <-+-negative-0-1
(equal (< (+ (- y) x) 0)
(< x y)))
(defthm <-+-negative-0-2
(equal (< (+ x (- y)) 0)
(< x y)))
(defthm <-*-0
(implies (and (rationalp x)
(rationalp y))
(equal (< (* x y) 0)
(and (not (equal x 0))
(not (equal y 0))
(iff (< x 0)
(< 0 y))))))
(defthm 0-<-*
(implies (and (rationalp x)
(rationalp y))
(equal (< 0 (* x y))
(and (not (equal x 0))
(not (equal y 0))
(iff (< 0 x)
(< 0 y))))))
; The following two lemmas could be extended by adding two more such
; lemmas, i.e. for (< (* x z) (* z y)) and (< (* z x) (* y z)), but
; rather than incur that overhead here and in any other such cases
; (and besides, how about for example (< (* x z a) (* z a y))?), I'll
; wait for metalemmas to handle such things.
(local
(in-arithmetic-theory '((:rewrite COMMUTATIVITY-OF-*))))
(defthm <-*-right-cancel
(implies (and (fc (rationalp x))
(fc (rationalp y))
(fc (rationalp z)))
(equal (< (* x z) (* y z))
(cond ((< 0 z) (< x y))
((< z 0) (< y x))
((equal z 0) nil)
(t nil)))))
(defthm <-*-left-cancel
(implies (and (fc (rationalp x))
(fc (rationalp y))
(fc (rationalp z)))
(equal (< (* z x) (* z y))
(cond ((< 0 z) (< x y))
((< z 0) (< y x))
((equal z 0) nil)
(t nil)))))
(defthm <-*-x-y-y
(implies (and (fc (rationalp x))
(fc (rationalp y)))
(equal (< (* x y) y)
(cond
((< 0 y) (< x 1))
((< y 0) (< 1 x))
((equal y 0) nil)
(t nil)))))
(defthm <-*-y-x-y
(implies (and (fc (rationalp x))
(fc (rationalp y)))
(equal (< (* y x) y)
(cond
((< 0 y) (< x 1))
((< y 0) (< 1 x))
((equal y 0) nil)
(t nil)))))
(defthm <-y-*-x-y
(implies (and (fc (rationalp x))
(fc (rationalp y)))
(equal (< y (* x y))
(cond
((< 0 y) (< 1 x))
((< y 0) (< x 1))
((equal y 0) nil)
(t nil)))))
(defthm <-y-*-y-x
(implies (and (fc (rationalp x))
(fc (rationalp y)))
(equal (< y (* y x))
(cond
((< 0 y) (< 1 x))
((< y 0) (< x 1))
((equal y 0) nil)
(t nil)))))
|