File: building-blocks-helper.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (153 lines) | stat: -rw-r--r-- 3,785 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; building-blocks-helper.lisp
;;;
;;; This book contains some messy proofs which I want to hide.
;;; There is probably nothing to be gained by looking at it.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package "ACL2")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(local
 (include-book "../../support/top"))

(local
 (defun rationalp-guard-fn (args)
   (if (endp (cdr args))
       `((rationalp ,(car args)))
     (cons `(rationalp ,(car args))
	   (rationalp-guard-fn (cdr args))))))



(local
 (defmacro rationalp-guard (&rest args)
   (if (endp (cdr args))
       `(rationalp ,(car args))
     (cons 'and
	   (rationalp-guard-fn args)))))

(local
 (defun real/rationalp-guard-fn (args)
   (if (endp (cdr args))
       `((real/rationalp ,(car args)))
     (cons `(real/rationalp ,(car args))
	   (real/rationalp-guard-fn (cdr args))))))



(local
 (defmacro real/rationalp-guard (&rest args)
   (if (endp (cdr args))
       `(real/rationalp ,(car args))
     (cons 'and
	   (real/rationalp-guard-fn args)))))


(local
 (defthm niq-bounds
   (implies (and (integerp i)
		 (<= 0 i)
		 (integerp j)
		 (< 0 j))
	    (and (<= (nonnegative-integer-quotient i j)
		     (/ i j))
		 (< (+ (/ i j) -1)
		    (nonnegative-integer-quotient i j))))
   :hints (("Subgoal *1/1''" :use (:instance NORMALIZE-<-/-TO-*-3-3
					     (X 1)
					     (Z J)
					     (Y I))))
   :rule-classes ((:linear
		   :trigger-terms ((nonnegative-integer-quotient i j))))))

(local
 (defthm floor-bounds-1
   (implies (real/rationalp-guard x y)
	    (and (< (+ (/ x y) -1)
		    (floor x y))
		 (<= (floor x y)
		     (/ x y))))
   :rule-classes ((:generalize)
		  (:linear :trigger-terms ((floor x y))))))

(local
 (defthm floor-bounds-2
   (implies (and (real/rationalp-guard x y)
		 (integerp (/ x y)))
	    (equal (floor x y)
		   (/ x y)))
   :rule-classes ((:generalize)
		  (:linear :trigger-terms ((floor x y))))))

(local
 (defthm floor-bounds-3
   (implies (and (real/rationalp-guard x y)
		 (not (integerp (/ x y))))
	    (< (floor x y)
	       (/ x y)))
   :rule-classes ((:generalize)
		  (:linear :trigger-terms ((floor x y))))))

(local
 (in-theory (disable floor)))

(defthm one
  (IMPLIES (AND (INTEGERP x)
		(integerp y)
		(<= 0 y))
	   (<= 0
	       (LOGAND x y)))
  :rule-classes :linear)

(defthm two
  (IMPLIES (AND (INTEGERP x)
		(integerp y)
		(<= 0 y))
	   (<= (LOGAND x y)
	       y))
  :rule-classes :linear)

(defthm rewrite-floor-x*y-z-left
  (implies (and (real/rationalp x)
		(real/rationalp y)
		(real/rationalp z)
		(not (equal z 0)))
	   (equal (floor (* x y) z)
		  (floor y (/ z x)))))

(defun power-of-2-measure (x)
  (declare (xargs :guard (and (real/rationalp x) (not (equal x 0)))))
  (cond ((or (not (real/rationalp x))
             (<= x 0)) 0)
	((< x 1) (cons (cons 1 1) (floor (/ x) 1)))
	(t (floor x 1))))

(defun power-of-2-helper (x)
  (declare (xargs :guard t
                  :measure (power-of-2-measure x)
		  :hints (("Subgoal 2.2'" :use (:instance
						(:theorem
						 (IMPLIES (AND (REAL/RATIONALP X)
							       (< 2 X))
							  (< (FLOOR X 2) (FLOOR X 1))))
						(x (/ x)))
			                  :in-theory (enable NORMALIZE-<-/-TO-*-1)))))
  (cond ((or (not (real/rationalp x))
             (<= x 0))
         0)
        ((< x 1) (+ -1 (power-of-2-helper (* 2 x))))
        ((<= 2 x) (+ 1 (power-of-2-helper (* 1/2 x))))
        ((equal x 1) 0)
        (t 0) ;got a number in the doubly-open interval (1,2)
        ))