1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
|
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; building-blocks.lisp
;;;
;;; This book contains functions we have found helpful when defining
;;; bind-free rules.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(local
(include-book "building-blocks-helper"))
(table acl2-defaults-table :state-ok t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Since we mostly deal with binary operations in our bind-freee
;;; rules, we define a couple of functions for accessing the first and
;;; second args.
(defun arg1 (x)
(declare (xargs :guard t))
(if (and (consp x)
(consp (cdr x)))
(cadr x)
nil))
(defun arg2 (x)
(declare (xargs :guard t))
(if (and (consp x)
(consp (cdr x))
(consp (cddr x)))
(caddr x)
nil))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; A couple of simple recognizers for constants.
(defun constant-p (x)
(declare (xargs :guard t))
(and (quotep x)
(consp (cdr x))))
(defun numeric-constant-p (x)
(declare (xargs :guard t))
(and (quotep x)
(consp (cdr x))
(acl2-numberp (unquote x))))
(defun integer-constant-p (x)
(declare (xargs :guard t))
(and (quotep x)
(consp (cdr x))
(integerp (unquote x))))
(defun rational-constant-p (x)
(declare (xargs :guard t))
(and (quotep x)
(consp (cdr x))
(rationalp (unquote x))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Two is an important number.
;;; 2 is an important number in hardware and software proofs and
;;; we treat it specially here. The basic idea is to recognize
;;; powers of 2 inside an expt, and to rewrite appropriately.
;;; See common.lisp and collect.lisp.
;;; This was taken from somewhere in the rtl books and modified.
(defun power-of-2-measure (x)
(declare (xargs :guard (and (real/rationalp x) (not (equal x 0)))))
(cond ((or (not (real/rationalp x))
(<= x 0)) 0)
((< x 1) (cons (cons 1 1) (floor (/ x) 1)))
(t (floor x 1))))
(defun power-of-2-helper (x)
(declare (xargs :guard t
:measure (power-of-2-measure x)))
(cond ((or (not (real/rationalp x))
(<= x 0))
0)
((< x 1) (+ -1 (power-of-2-helper (* 2 x))))
((<= 2 x) (+ 1 (power-of-2-helper (* 1/2 x))))
((equal x 1) 0)
(t 0)))
(defun power-of-2-generalized (x)
(declare (xargs :guard t))
;; Examples:
;; 4 --> 2
;; 1/8 --> -3
;; 3 --> nil
;; 0 --> nil
(cond ((not (rational-constant-p x))
nil)
((< 0 (unquote x))
(let ((c (power-of-2-helper (unquote x))))
(if (equal (expt 2 c) (unquote x))
c
nil)))
((< (unquote x) 0)
(let ((c (power-of-2-helper (- (unquote x)))))
(if (equal (expt 2 c) (- (unquote x)))
c
nil)))
(t
nil)))
(defun power-of-2 (x)
(declare (xargs :guard t))
(cond ((not (integer-constant-p x))
nil)
((< 1 (unquote x))
(let ((c (power-of-2-helper (unquote x))))
(if (equal (expt 2 c) (unquote x))
c
nil)))
((< (unquote x) -1)
(let ((c (power-of-2-helper (- (unquote x)))))
(if (equal (expt 2 c) (- (unquote x)))
c
nil)))
(t
nil)))
(defun power-of-2-minus-1 (x)
(declare (xargs :guard t))
(cond ((not (integer-constant-p x))
nil)
((< 0 (unquote x))
(let ((c (power-of-2-helper (+ 1 (unquote x)))))
(if (equal (expt 2 c) (+ 1 (unquote x)))
c
nil)))
(t
nil)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Are we rewriting a top-level goal literal, rather than rewriting
;;; a hypothesis from a rewrite (or other) rule? (Ancestors is a
;;; list of the negations of backchaining hypotheses being pursued.
;;; Hence we are rewriting a goal literal iff it is NIL.)
;;; Note that we are not testing whether the term being rewritten
;;; is itself a goal literal. Only whether what we are rewriting
;;; is either
;;; 1. (possibly part of) a goal literal, or
;;; 2. derived from (possibly part of) one.
(defun rewriting-goal-literal (x mfc state)
(declare (xargs :guard t))
(declare (ignore x state))
(null (mfc-ancestors mfc)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; We will be asking whether certain terms appear in the goal,
;;; or ancestors. There is a wrinkle we handle here. If the
;;; term under consideration is an equality, we have to check
;;; both orders of its args.
(defun term-equal (term1 term2)
(declare (xargs :guard t))
(if (equal (fn-symb term1) 'EQUAL)
(and (equal (fn-symb term2) 'EQUAL)
(or (and (equal (arg1 term1) (arg1 term2))
(equal (arg2 term1) (arg2 term2)))
(and (equal (arg1 term1) (arg2 term2))
(equal (arg2 term1) (arg1 term2)))))
(equal term1 term2)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Is the term we are rewriting the hypothesis of a rewrite
;;; (or other) rule?
;;; Ancestors is a list of the negations of backchaining hypotheses
;;; being pursued. Hence if it is non-empty, its car is the
;;; hypothesis currently being rewritten.
;;; Why do we not just use (not (rewriting-goal-literal ...))?
;;; Because that does not avoid application when rewriting
;;; subterms or function expansion.
(defun rewriting-hypothesis-1 (term ancestors)
(declare (xargs :guard t))
(if (and (consp ancestors)
(consp (car ancestors)))
(let ((hyp (caar ancestors)))
(cond ((term-equal term hyp)
'positive)
((and (eq (fn-symb hyp) 'NOT)
(term-equal term (arg1 hyp)))
'negative)
(t
nil)))
nil))
(defun rewriting-hypothesis (term mfc state)
(declare (ignore state))
(rewriting-hypothesis-1 term (mfc-ancestors mfc)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Present-in-hyps is 'positive if term appears as a literal
;;; of goal, and 'negative if term appears negated. It is NIL
;;; otherwise. Note that due to ACL2's internal representation
;;; of a goal in disjunctive normal form, the hypotheses of a
;;; goal appear internally in the opposite form that the user
;;; sees. Thus, a hypothesis such as (<= x y) will appear
;;; as (< y x) in the clause, while (< x y) will appear as
;;; (not (< x y)).
;;; Note that linear arithmetic will see things in the opposite
;;; sense as returned by this function. I find all of this
;;; confusing.
;;; We do not check the conclusion (the final literal) of the
;;; goal, only the hypotheses.
;;; Note that, as distinguished from rewriting-goal-literal, we
;;; ask if term is itself in the goal (possibly negated).
;;; We assume term is, itself, not negated.
(defun present-in-hyps (term goal)
(declare (xargs :guard t))
(cond ((atom goal) ; for the guard.
nil)
((atom (cdr goal))
;; We only check the hypotheses of a goal, not the
;; conclusion. Presumably, if a weak inequality
;; appeared in the conclusion, the goal would already
;; have been proven via linear arithmetic.
nil)
((term-equal term (car goal))
'positive)
((and (eq (fn-symb (car goal)) 'NOT)
(term-equal term (arg1 (car goal))))
'negative)
(t
(present-in-hyps term (cdr goal)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Analogous to present-in-hyps, but checks the entire goal.
(defun present-in-goal-1 (term goal)
(declare (xargs :guard t))
(cond ((atom goal)
nil)
((term-equal term (car goal))
'positive)
((and (eq (fn-symb (car goal)) 'NOT)
(term-equal term (arg1 (car goal))))
'negative)
(t
(present-in-goal-1 term (cdr goal)))))
(defun present-in-goal (term mfc state)
(declare (ignore state))
(present-in-goal-1 term (mfc-clause mfc)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun negate-match (match)
;; Match is presumably an arithmetic expression. We return
;; the equivalent of `(unary-- ,match), simplifying the
;; expression in some cases.
(declare (xargs :guard t))
(cond ((variablep match)
`(UNARY-- ,match))
((numeric-constant-p match)
(kwote (- (unquote match))))
((eq (ffn-symb match) 'UNARY--)
(arg1 match))
((and (eq (ffn-symb match) 'BINARY-*)
(numeric-constant-p (arg1 match)))
`(BINARY-* ,(kwote (- (unquote (arg1 match))))
,(arg2 match)))
;; Needed for call in invert-match
((eq (ffn-symb match) 'BINARY-+)
`(BINARY-+ ,(negate-match (arg1 match))
,(negate-match (arg2 match))))
(t
`(UNARY-- ,match))))
;;; from when (/ (expt x n)) was the preferred form:
;;; (but was I really handling products correctly?
#|
(defun invert-match (match)
(declare (xargs :guard t))
(cond ((variablep match)
`(UNARY-/ ,match))
((numeric-constant-p match)
(if (eql (unquote match) 0)
(kwote 0)
(kwote (/ (unquote match)))))
((eq (ffn-symb match) 'UNARY-/)
(arg1 match))
((eq (ffn-symb match) 'UNARY--)
`(UNARY-- (UNARY-/ ,match)))
(t
`(UNARY-/ ,match))))
|#
(defun invert-match (match)
(declare (xargs :guard t))
(cond ((variablep match)
`(UNARY-/ ,match))
((numeric-constant-p match)
(if (eql (unquote match) 0)
(kwote 0)
(kwote (/ (unquote match)))))
((eq (ffn-symb match) 'UNARY-/)
(arg1 match))
((eq (ffn-symb match) 'UNARY--)
`(UNARY-- ,(invert-match (arg1 match))))
((eq (ffn-symb match) 'BINARY-*)
`(BINARY-* ,(invert-match (arg1 match))
,(invert-match (arg2 match))))
((eq (ffn-symb match) 'EXPT)
`(EXPT ,(arg1 match) ,(negate-match (arg2 match))))
(t
`(UNARY-/ ,match))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Wrappers for mfc-rw.
;;; We often want to answer the question, ``` Does ACL2 know
;;; that this term is an xxx?''' where xxx is one of
;;; a. integer, b. rational, c. non-zero number, or d. non-zero
;;; rational
(defun proveably-integer (x alist mfc state)
(declare (xargs :guard t))
;; Can rewriting determine that x is an integer?
(equal (mfc-rw+ `(INTEGERP ,x)
alist
t t mfc state)
*t*))
(defun proveably-rational (x alist mfc state)
(declare (xargs :guard t))
;; Can rewriting determine that x is rational?
(equal (mfc-rw+ `(RATIONALP ,x)
alist
t t mfc state)
*t*))
(defun proveably-real/rational (x alist mfc state)
(declare (xargs :guard t))
;; Can rewriting determine that x is rational?
(equal (mfc-rw+ #-non-standard-analysis `(RATIONALP ,x)
#+non-standard-analysis `(REALP ,x)
alist
t t mfc state)
*t*))
(defun proveably-acl2-numberp (x alist mfc state)
(declare (xargs :guard t))
;; Can rewriting determine that x is a number?
(equal (mfc-rw+ `(ACL2-NUMBERP ,x)
alist
t t mfc state)
*t*))
(defun proveably-non-zero1 (x alist mfc state)
(declare (xargs :guard t))
(equal (mfc-rw+ `(NOT (EQUAL (FIX ,x) '0))
alist
t t mfc state)
*t*))
(defun proveably-non-zero (x alist mfc state)
(declare (xargs :guard t))
;; If x is not an IF expression, can rewriting determine that it
;; is numeric and not equal to zero?
(cond ((variablep x)
(proveably-non-zero1 x alist mfc state))
((fquotep x)
(and (numeric-constant-p x)
(not (equal x ''0))))
((eq (ffn-symb x) 'IF)
nil)
(t
(proveably-non-zero1 x alist mfc state))))
(defun proveably-non-zero-rational1 (x alist mfc state)
(declare (xargs :guard t))
(equal (mfc-rw+ `(NOT (EQUAL (RFIX ,x) '0))
alist
t t mfc state)
*t*))
(defun proveably-non-zero-rational (x alist mfc state)
(declare (xargs :guard t))
;; If x is not an IF expression, can rewriting determine that it
;; is rational and not equal to zero?
(cond ((variablep x)
(proveably-non-zero-rational1 x alist mfc state))
((fquotep x)
(and (rational-constant-p x)
(not (equal x ''0))))
((eq (ffn-symb x) 'IF)
nil)
(t
(proveably-non-zero-rational1 x alist mfc state))))
(defun proveably-non-zero-real/rational1 (x alist mfc state)
(declare (xargs :guard t))
(equal (mfc-rw+ #-non-standard-analysis `(NOT (EQUAL (RFIX ,x) '0))
#+non-standard-analysis `(NOT (EQUAL (REALFIX ,x) '0))
alist
t t mfc state)
*t*))
(defun proveably-non-zero-real/rational (x alist mfc state)
(declare (xargs :guard t))
;; If x is not an IF expression, can rewriting determine that it
;; is rational and not equal to zero?
(cond ((variablep x)
(proveably-non-zero-real/rational1 x alist mfc state))
((fquotep x)
(and (rational-constant-p x)
(not (equal x ''0))))
((eq (ffn-symb x) 'IF)
nil)
(t
(proveably-non-zero-real/rational1 x alist mfc state))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Before I moved the distributivity rules to distributivity.lisp, I
;;; used the following:
#|
(defun stable-under-rewriting (x bin-op mfc state)
(declare (xargs :guard (symbolp bin-op)))
(let* ((secret-constant ''1234789/9876321)
(rewritten-term (mfc-rw+ `(,bin-op ,secret-constant x)
`((x . ,x))
'? nil mfc state)))
(and (consp rewritten-term)
(eq (car rewritten-term) bin-op)
(consp (cdr rewritten-term))
(consp (cddr rewritten-term))
(if (equal (cadr rewritten-term) secret-constant)
(equal (caddr rewritten-term) x)
(equal (cadr rewritten-term) x)))))
|#
;;; But I now believe the following is sufficient.
(defun stable-under-rewriting (x bin-op mfc state)
(declare (xargs :guard (symbolp bin-op))
(ignore bin-op))
(let ((rewritten-term (mfc-rw+ `(fix x)
`((x . ,x))
'? nil mfc state)))
(equal rewritten-term x)))
(defun stable-under-rewriting-sums (x mfc state)
(declare (xargs :guard t))
;; If x is not an IF expression, does it rewrite to itself when
;; inside a sum?
;; This function is designed to test whether it is safe to add x to
;; a sum in order to cancel out a matching addend. (X is presumably
;; the negation of this matching addend.) This function tests
;; whether it is safe to do so. It is not safe if x would be
;; rewritten to something else before it got a chance to be canceled
;; against its match. There are two common situations where this
;; can occur (and doubtless others). First, when setting up the
;; initial simplify-clause-pot-lst for Goal, it is possible that the
;; larger expression containing (the match for) x has not been
;; rewritten, and so x is in some unstable form. Second, since x
;; has been negated, it is possible that rewrite-solidify will
;; replace x with some other term. This can cause loops since the
;; term x is supposed to cancel with will remain to be canceled
;; again.
(cond ((variablep x)
(stable-under-rewriting x 'BINARY-+ mfc state))
((fquotep x)
t)
((member-eq (ffn-symb x) '(IF BINARY-+))
nil)
(t
(stable-under-rewriting x 'BINARY-+ mfc state))))
(defun stable-under-rewriting-products (x mfc state)
(declare (xargs :guard t))
;; If x is not an IF expression, does it rewrite to itself when
;; inside a product?
(cond ((variablep x)
(stable-under-rewriting x 'BINARY-* mfc state))
((fquotep x)
t)
((member-eq (ffn-symb x) '(IF BINARY-*))
nil)
(t
(stable-under-rewriting x 'BINARY-* mfc state))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Another source of loops is, for instance, sums in which the
;;; item we are cancelling is too far down the sum to see:
;;; (* x (* (foo x) (expt 2 x) (/ x)))
(defun in-term-order-+ (x mfc state)
(declare (xargs :mode :program))
(declare (ignorable mfc))
(if (equal (fn-symb x) 'BINARY-+)
(if (equal (fn-symb (arg2 x)) 'BINARY-+)
(and (term-order+ (arg1 x) (arg1 (arg2 x))
(invisible-fns '(BINARY-+)
(invisible-fns-table (w state))
t))
(in-term-order-+ (arg2 x) mfc state))
(term-order+ (arg1 x) (arg2 x)
(invisible-fns '(BINARY-+)
(invisible-fns-table (w state))
t)))
t))
(defun in-term-order-* (x mfc state)
(declare (xargs :mode :program))
(declare (ignorable mfc))
(if (equal (fn-symb x) 'BINARY-*)
(if (equal (fn-symb (arg2 x)) 'BINARY-*)
(and (term-order+ (arg1 x) (arg1 (arg2 x))
(invisible-fns '(BINARY-*)
(invisible-fns-table (w state))
t))
(in-term-order-* (arg2 x) mfc state))
(term-order+ (arg1 x) (arg2 x)
(invisible-fns '(BINARY-*)
(invisible-fns-table (w state))
t)))
t))
(defun in-term-order (x mfc state)
(declare (xargs :mode :program))
(cond ((equal (fn-symb x) 'BINARY-+)
(in-term-order-+ x mfc state))
((equal (fn-symb x) 'BINARY-*)
(in-term-order-* x mfc state))
(t
t)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; We next define several functions for recognizing terms of
;;; particular syntactic forms.
(defun negative-addends-p-1 (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
nil)
((fquotep x)
(and (rational-constant-p x)
(< (unquote x) 0)))
((eq (ffn-symb x) 'UNARY--)
(and (not (eq (fn-symb (arg1 x)) 'UNARY--))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state)))
((eq (ffn-symb x) 'BINARY-*)
(and (rational-constant-p (arg1 x))
(< (unquote (arg1 x)) 0)))
((eq (ffn-symb x) 'BINARY-+)
(and (negative-addends-p-1 (arg1 x) mfc state)
(negative-addends-p-1 (arg2 x) mfc state)))
(t
nil)))
(defun negative-addends-p (x mfc state)
(declare (xargs :guard t))
;; X is an ACL2 term. We return t if x is a negative addend, or a
;; sum of negative addends. Here, an addend is considered to be
;; negative if it is a negative rational constant, or prints as
;; (- ...) or (* c ...) where c is a negative rational. We also
;; require that x is not merely a negative constant.
(if (quotep x)
nil
(negative-addends-p-1 x mfc state)))
(defun negative-addends-balance (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
-1)
((fquotep x)
(if (and (rational-constant-p x)
(< (unquote x) 0))
1
-1))
((eq (ffn-symb x) 'UNARY--)
(if (and (not (eq (fn-symb (arg1 x)) 'UNARY--))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state))
1
-1))
((eq (ffn-symb x) 'BINARY-*)
(if (and (rational-constant-p (arg1 x))
(< (unquote (arg1 x)) 0))
1
-1))
((eq (ffn-symb x) 'BINARY-+)
(+ (negative-addends-balance (arg1 x) mfc state)
(negative-addends-balance (arg2 x) mfc state)))
(t
-1)))
(defun mostly-negative-addends-p (x mfc state)
;; Are more than half the addends negative?
(declare (xargs :guard t))
(if (quotep x)
nil
(< 0 (negative-addends-balance x mfc state))))
(defun weak-negative-addends-p-1 (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
nil)
((fquotep x)
(rational-constant-p x))
((eq (ffn-symb x) 'UNARY--)
(and (not (eq (fn-symb (arg1 x)) 'UNARY--))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state)))
((eq (ffn-symb x) 'BINARY-*)
(and (rational-constant-p (arg1 x))
(< (unquote (arg1 x)) 0)))
((eq (fn-symb x) 'BINARY-+)
(and (negative-addends-p-1 (arg1 x) mfc state)
(negative-addends-p-1 (arg2 x) mfc state)))
(t
nil)))
(defun weak-negative-addends-p (x mfc state)
(declare (xargs :guard t))
;; This is similar to the above, but we do not consider the sign of
;; rational constants.
(if (quotep x)
nil
(weak-negative-addends-p-1 x mfc state)))
(defun weak-negative-addends-balance (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
-1)
((fquotep x)
(if (rational-constant-p x)
0
-1))
((eq (ffn-symb x) 'UNARY--)
(if (and (not (eq (fn-symb (arg1 x)) 'UNARY--))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state))
1
-1))
((eq (ffn-symb x) 'BINARY-*)
(if (and (rational-constant-p (arg1 x))
(< (unquote (arg1 x)) 0))
1
-1))
((eq (ffn-symb x) 'BINARY-+)
(+ (weak-negative-addends-balance (arg1 x) mfc state)
(weak-negative-addends-balance (arg2 x) mfc state)))
(t
-1)))
(defun weak-mostly-negative-addends-p (x mfc state)
;; Are more than half the addends negative?
(declare (xargs :guard t))
(if (quotep x)
nil
(< 0 (weak-negative-addends-balance x mfc state))))
(defun divisive-factors-p-1 (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
nil)
((quotep x)
(and (not (integer-constant-p x))
(rational-constant-p x)
(equal (numerator (unquote x)) 1)))
((eq (ffn-symb x) 'UNARY-/)
(and (not (eq (fn-symb (arg1 x)) 'UNARY-/))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state)))
((eq (ffn-symb x) 'EXPT)
(if (quotep (arg2 x))
(and (integer-constant-p (arg2 x))
(< (unquote (arg2 x)) 0))
(negative-addends-p (arg2 x) mfc state)))
((eq (fn-symb x) 'BINARY-*)
(and (divisive-factors-p-1 (arg1 x) mfc state)
(divisive-factors-p-1 (arg2 x) mfc state)))
(t
nil)))
(defun divisive-factors-p (x mfc state)
(declare (xargs :guard t))
;; X is an ACL2 term. We return t if x is a divisive factor, or a
;; product of divisive factors. Here, an factor is considered to be
;; divisive if it is a non-integer rational constant of the form
;; 1/c, or prints as (/ ...) or (expt x n) where n is a
;; negative-addends-p. We also require that x is not merely a
;; constant.
(if (quotep x)
nil
(divisive-factors-p-1 x mfc state)))
(defun divisive-factors-balance (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
-1)
((quotep x)
(if (and (not (integer-constant-p x))
(rational-constant-p x)
(equal (numerator (unquote x)) 1))
1
-1))
((eq (ffn-symb x) 'UNARY-/)
(if (and (not (eq (fn-symb (arg1 x)) 'UNARY-/))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state))
1
-1))
((eq (ffn-symb x) 'EXPT)
(if (if (quotep (arg2 x))
(and (integer-constant-p (arg2 x))
(< (unquote (arg2 x)) 0))
(mostly-negative-addends-p (arg2 x) mfc state))
1
-1))
((eq (fn-symb x) 'BINARY-*)
(+ (divisive-factors-balance (arg1 x) mfc state)
(divisive-factors-balance (arg2 x) mfc state)))
(t
-1)))
(defun mostly-divisive-factors-p (x mfc state)
(declare (xargs :guard t))
;; Are more than half the factors divisive?
(if (quotep x)
nil
(< 0 (divisive-factors-balance x mfc state))))
(defun weak-divisive-factors-p-1 (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
nil)
((quotep x)
(rational-constant-p x))
((eq (ffn-symb x) 'UNARY-/)
(and (not (eq (fn-symb (arg1 x)) 'UNARY-/))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state)))
((eq (ffn-symb x) 'EXPT)
(if (quotep (arg2 x))
(and (integer-constant-p (arg2 x))
(< (unquote (arg2 x)) 0))
(weak-negative-addends-p (arg2 x) mfc state)))
((eq (fn-symb x) 'BINARY-*)
(and (weak-divisive-factors-p-1 (arg1 x) mfc state)
(weak-divisive-factors-p-1 (arg2 x) mfc state)))
(t
nil)))
(defun weak-divisive-factors-p (x mfc state)
(declare (xargs :guard t))
;; This is similar to the above, but we do not consider the
;; divisiveness of rational constants.
(if (quotep x)
nil
(weak-divisive-factors-p-1 x mfc state)))
(defun weak-divisive-factors-balance (x mfc state)
(declare (xargs :guard t))
(cond ((variablep x)
-1)
((quotep x)
(if (rational-constant-p x)
0
-1))
((eq (ffn-symb x) 'UNARY-/)
(if (and (not (eq (fn-symb (arg1 x)) 'UNARY-/))
(proveably-acl2-numberp 'x `((x . ,(arg1 x)))
mfc state))
1
-1))
((eq (ffn-symb x) 'EXPT)
(if (if (quotep (arg2 x))
(and (integer-constant-p (arg2 x))
(< (unquote (arg2 x)) 0))
(mostly-negative-addends-p (arg2 x) mfc state))
1
-1))
((eq (fn-symb x) 'BINARY-*)
(+ (weak-divisive-factors-balance (arg1 x) mfc state)
(weak-divisive-factors-balance (arg2 x) mfc state)))
(t
-1)))
(defun weak-mostly-divisive-factors-p (x mfc state)
(declare (xargs :guard t))
;; Are more than half the factors divisive?
(if (quotep x)
nil
(< 0 (weak-divisive-factors-balance x mfc state))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; We try restricting if lifting to when the test is presumably
;;; useful to arithmetic reasoning.
(defun ok-to-lift-p (x)
(declare (xargs :guard t))
(cond ((variablep x)
t)
((fquotep x)
t)
((and (consp (cdr x))
(equal (car x) 'NOT))
;; The negation of <term> is OK if <term> is.
(ok-to-lift-p (cadr x)))
((and (consp (cdr x))
(equal (car x) 'IF)
(consp (cddr x))
(consp (cdddr x)))
;; (IF <test> <t-b> <f-b>) is OK if <test>, <t-b>, and <f-b>
;; are.
(and (ok-to-lift-p (cadr x))
(ok-to-lift-p (caddr x))
(ok-to-lift-p (cadddr x))))
((consp x)
;; The following arithmetic predicates are OK.
(member-eq (car x) '(acl2-numberp
rationalp
#+:non-standard-analysis realp
integerp
natp
posp
complex-rationalp
#+:non-standard-analysis complexp
equal
eql
<)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun addends (sum)
(declare (xargs :guard t))
(if (eq (fn-symb sum) 'BINARY-+)
(cons (arg1 sum)
(addends (arg2 sum)))
(list sum)))
(defun factors (product)
(declare (xargs :guard t))
(if (eq (fn-symb product) 'BINARY-*)
(cons (arg1 product)
(factors (arg2 product)))
(list product)))
(defun make-product (factors)
(declare (xargs :guard t))
(cond ((atom factors)
''1)
((atom (cdr factors))
(car factors))
((atom (cddr factors))
(list 'BINARY-* (car factors) (cadr factors)))
(t
(list 'BINARY-* (car factors) (make-product (cdr factors))))))
; Intersection-equal was added to ACL2 in Version 4.0.
;; [Jared] Modified 2015-04-30 to agree with the definition in data-structures.
;; FYI, this is why we need to use packages.
;; (defun set-equal (x y)
;; (declare (xargs :guard t))
;; (and (true-listp x)
;; (true-listp y)
;; (subsetp-equal x y)
;; (subsetp-equal y x)))
(defun set-equal (a b)
(declare (xargs :guard (and (true-listp a)
(true-listp b))))
(and (subsetp-equal a b)
(subsetp-equal b a)))
(defun common-factors (factors sum)
(declare (xargs :measure (acl2-count sum)
:guard (true-listp factors)))
;; Factors are the common factors so far. Sum is the rest of the
;; sum to be examined. Normalize-terms-such-as-1/ax+bx-fn calls this
;; the first time when it is examining a term of the form
;; (+ <addend> <rest-of-sum>), with factors the factors of <addend> and
;; sum <sum>. Using intersection-equal we cull the common factors of
;; factors and the addends of sum.
(cond ((atom factors)
nil)
((eq (fn-symb sum) 'BINARY-+)
(common-factors (intersection-equal factors (factors (arg1 sum)))
(arg2 sum)))
(t
(intersection-equal factors (factors sum)))))
(defun remainder (common-factors sum)
(declare (xargs :guard (true-listp common-factors)))
;; We form a new sum which is the original sum but with the common
;; factors removed from each addend. That is, we return
;; (/ sum (make-product common)) where we assume that
;; (make-product common) is non-zero.
(if (eq (fn-symb sum) 'BINARY-+)
(let ((first (make-product (set-difference-equal (factors (arg1 sum))
common-factors))))
(list 'BINARY-+ first (remainder common-factors (arg2 sum))))
(make-product (set-difference-equal (factors sum)
common-factors))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The following is close to correct, but see the implentation of
;;; simplify-ok-p and its associated comments for the truth.
;;; When used as a syntaxp hypothesis in a simplification rule,
;;; ok-to-perform-xxx-simplification-p should prohibit the use of the
;;; rule only when type-set can
;;; 1. determine that the original lhs and rhs of the inequality are
;;; integers, but
;;; 2. cannot determine that the new ones are alos integers.
;;; I will thus be performing the simplification unless to do so will
;;; prevent linear arithmetic from using the ``1+ trick''
;;; (implies (and (integerp lhs)
;;; (integerp rhs))
;;; (equal (< lhs rhs)
;;; (<= (+ 1 lhs) rhs)))
;;; This limitation will occasionaly allow linear arithmetic to prove
;;; theorems it would not otherwise be able to. Here is part of an
;;; email exchange with Bill Legato on the subject:
#|
Note: In the examples below I use the dummy function foo to force
simplification of the inequalites before linear arithemtic can be
brought to bear on the conclusion. This simulates 1) the use of
linear arithmetic during backchaining which is by far the most common
situation linear arithmetic is used, and 2) the interaction of rewrite
rules and linear arithmetic when an inequality appears at a goal other
than the initial one. I used the two events:
(defstub foo (x) t)
(defaxiom foo-thm
(implies (equal x x)
(equal (foo x)
x)))
The rule that allows the other libraries to solve the problems that
the current version of arithmetic-3 misses is, in its simplest form:
(implies (and (rationalp x)
(rationalp y)
(rationalp z)
(< 0 x))
(equal (< (* x y) (* x z))
(< y z)))
This rule allows the thm:
(thm (implies (and (integerp x)
(<= 0 x)
(integerp y)
(<= 0 y)
(< (* 3 x) (* 3 y)))
(foo (< (+ 2 (* 3 x)) (* 3 y)))))
to be simplified to:
(implies (and (integerp x)
(<= 0 x)
(integerp y)
(<= 0 y)
(< x y))
(< (+ 2 (* 3 x)) (* 3 y)))
when linear arithmetic can prove the goal through the use of the ``1+
trick'', by using (<= (+ 1 x) y) rather than the weaker (< x y).
I had not been carrying out such simplifications in cases where x was a
constant. I had not not been doing so, because I had seen problems like:
(thm
(implies (and (rationalp x)
(integerp (* 3 x))
(rationalp y)
(integerp (* 3 y))
(< (* 3 x) (* 3 y)))
(foo (< (+ 2 (* 9 x)) (* 9 y)))))
where carrying out the division destroys the ability to use the trick.
As you mentioned in one of your emails, the difference in reasoning
about integers or rationals can make quite a difference sometimes. I
have certainly traced down failed proofs to such issues, and this led
me to not performing such cancelations.
===== Begin side bar comment one
However, even after carrying out this division, the book
rtl/rel5/arithmetic/top can still prove the above with the help of the
rule:
(defthm *-strongly-monotonic
(implies (and (< y y+)
(< 0 x)
(case-split (rationalp x))
)
(< (* x y) (* x y+)))
:rule-classes
((:forward-chaining :trigger-terms ((* x y) (* x y+)))
(:linear)
(:forward-chaining
:trigger-terms ((* y x) (* y+ x))
:corollary
(implies (and
(< y y+)
(< 0 x)
(case-split (rationalp x))
)
(< (* y x) (* y+ x))))
(:linear
:corollary
(implies (and
(< y y+)
(< 0 x)
(case-split (rationalp x))
)
(< (* y x) (* y+ x))))))
I do not include this rule because I found it too expensive and
inconsistent in its applications. My non-linear arithmetic extensions
can get many more theorems than can this rule (although not all of
them) at a smaller price in time used. In fact it was this rule and
its variations (see the various fp2 books) and just such problems which
led me to develop the non-linear extension.
Note that the inconsistencies in the application of this rule have
been somewhat alleviated in more recent versions of ACL2 by the
ability of forward-chaining rules to take on more than one
instantiation. I still, however, believe that my non-linear
arithmetic extension is better.
===== End side bar comment one
===== Begin side bar comment two
Each of the libraries
arithmetic/top
arithmetic-3/bind-free/top
rtl/rel5/arithmetic/top
can get three of the following five thms:
;;; The basic example:
(thm (implies (and (integerp x)
(<= 0 x)
(integerp y)
(<= 0 y)
(< (* 3 x) (* 3 y)))
(foo (< (+ 2 (* 3 x)) (* 3 y)))))
;;; Since
;;; (thm
;;; (implies (and (integerp x)
;;; (integerp y))
;;; (equal (< x y)
;;; (<= (+ 1 x) y))))
;;; the following is logically equivalent to the above:
(thm (implies (and (integerp x)
(<= 0 x)
(integerp y)
(<= 0 y)
(<= (+ 1 (* 3 x)) (* 3 y)))
(foo (< (+ 2 (* 3 x)) (* 3 y)))))
;;; This is just the first with x and y replaced with (* 3 x)
;;; and (* 3 y) respectively
(thm
(implies (and (rationalp x)
(<= 0 x)
(integerp (* 3 x))
(rationalp y)
(<= 0 y)
(integerp (* 3 y))
(< (* 3 x) (* 3 y)))
(foo (< (+ 2 (* 9 x)) (* 9 y)))))
;;; A slight weakening of the above
(thm
(implies (and (rationalp x)
(<= 0 x)
(integerp (* 3 x))
(rationalp y)
(<= 0 y)
(integerp (* 3 y))
(< (+ 1 (* 3 x)) (* 3 y)))
(foo (< (+ 2 (* 9 x)) (* 9 y)))))
;;; A slightly more elaborate thm.
(thm
(implies (and (rationalp x)
(<= 0 x)
(integerp (* 3 x))
(rationalp y)
(<= 0 y)
(integerp (* 3 y))
(integerp z1)
(integerp z2)
(< (* 3 (+ x z1)) (* 3 (+ y z2))))
(foo (< (+ 2 (* 9 (+ x z1))) (* 9 (+ x z2))))))
===== End side bar comment two
I now believe that my rejection of such simplifications --- no
elimination of constants across equalities or inequalities --- was too
sweeping. The proper solution is to do so only when it is safe, but
defining ``safe'' is probably impossible in general. I will carry out
such simplifications across equalities. I will also carry out such
simplifications across inequalities only when to do so will not
destroy any integerp knowledge. At its simplest:
(implies (and (integerp (* x y))
(integerp (* x z))
(rationalp x)
(< 0 x)
(integerp y)
(integerp z))
(equal (< (* x y) (* x z))
(< y z)))
(implies (and (not (integerp (* x y)))
(not (integerp (* x z)))
(rationalp x)
(< 0 x)
(rationalp y)
(rationalp z))
(equal (< (* x y) (* x z))
(< y z)))
I may wish to carry out otherwise ``unsafe'' simplifications after the
clause has stabilized under simplification, but I don't think so.
Robert
|#
(defun mfc-obj (x mfc state)
(declare (xargs :guard t))
(declare (ignore x state))
;; Should we return something which is not a valid objective, rather
;; than '?.
;; (thm (equal (access metafunction-context mfc :obj)
;; (cadr mfc)))
(if (and (consp mfc)
(consp (cdr mfc)))
(cadr mfc)
'?))
(defun ts-fix (x)
(declare (xargs :guard t))
(let ((int-x (ifix x)))
(if (and (<= *min-type-set* int-x)
(<= int-x *max-type-set*))
int-x
0)))
(defthm ts-fix-min
(<= *min-type-set*
(ts-fix x))
:rule-classes :linear)
(defthm ts-fix-max
(<= (ts-fix x)
*max-type-set*)
:rule-classes :linear)
(defun simplify-ok-p-1 (orig-term new-term alist mfc state)
(declare (xargs :guard t
:guard-hints (("Goal" :in-theory (disable arg1 arg2 mfc-obj ts-fix)))))
(let ((orig-lhs (arg1 orig-term))
(orig-rhs (arg2 orig-term))
(new-lhs (arg1 new-term))
(new-rhs (arg2 new-term)))
(if (and (ts-subsetp (ts-fix (mfc-ts orig-lhs mfc state)) *ts-integer*)
(ts-subsetp (ts-fix (mfc-ts orig-rhs mfc state)) *ts-integer*))
;; So the original lhs and rhs are known to be integers.
;; Will the new ones be also?
(and (let ((rewritten-new-lhs (mfc-rw+ new-lhs
alist
'? nil mfc state)))
(ts-subsetp (ts-fix (mfc-ts rewritten-new-lhs mfc state))
*ts-integer*))
(let ((rewritten-new-rhs (mfc-rw+ new-rhs
alist
'? nil mfc state)))
(ts-subsetp (ts-fix (mfc-ts rewritten-new-rhs mfc state))
*ts-integer*)))
;; At least one of the original lhs and rhs were not known to be
;; integers. Proceed with the simplification.
t)))
(defun simplify-ok-p (orig-term new-term alist mfc state)
(declare (xargs :guard t))
;; Orig-term is the original term as seen by the rule which called
;; this. New-term is the right-hand side of the rules conclusion.
;; Alist is the binding alist which binds the vars of new-term to
;; their correct values. Both orig-term and new-term are assumed to
;; be an equality or inequality.
(let ((relation (fn-symb orig-term))
(obj (mfc-obj orig-term mfc state))
(ancestors (mfc-ancestors mfc))
(goal (mfc-clause mfc)))
(cond ((eq obj t)
;; Since linear arithmetic works by looking for a
;; contradiction, we will be adding the negation of term
;; to the linear arithmetic database.
(cond ((eq relation '<)
;; We will be adding (<= rhs lhs), so the 1+-trick
;; is not applicable. Go ahead and simplify.
t)
((eq relation 'EQUAL)
;; We will be adding (or (< lhs rhs) (< rhs lhs)),
;; so we must check further before we can tell if
;; the 1+-trick applies.
(simplify-ok-p-1 orig-term new-term
alist
mfc state))
(t ; This shouldn't happen
nil)))
((eq obj nil)
;; Since are looking to prove term false, we will be adding
;; term to the linear arithmetic database.
(cond ((eq relation '<)
;; We will be adding (< lhs rhs), so we must check
;; further before we can tell if the 1+-trick
;; applies.
(simplify-ok-p-1 orig-term new-term
alist
mfc state))
((eq relation 'EQUAL)
;; We will be adding (and (<= lhs rhs) (<= rhs lhs)),
;; so the 1+-trick is not applicable.
t)
(t ; This shouldn't happen
nil)))
((null ancestors)
;; We are rewriting some part of the goal.
(let ((parity (present-in-goal-1 orig-term goal)))
;; When we refer to linear arithmetic seeing some
;; inequality below, we are referring to the setting up
;; of the initial simlpify-clause-pot-lst, not the use of
;; linear arithmetic during rewriting.
(cond ((eq parity 'positive)
(cond ((eq relation '<)
;; Linear arithmetic sees this as
;; (<= rhs lhs), so the 1+-trick is not
;; applicable. Go ahead and simplify.
t)
((eq relation 'EQUAL)
;; Linear arithmetic sees this as
;; (or (< lhs rhs) (< rhs lhs)), so we must
;; check further before we can tell if the
;; 1+-trick applies.
(simplify-ok-p-1 orig-term new-term
alist
mfc state))
(t ; This shouldn't happen
nil)))
((eq parity 'negative)
(cond ((eq relation '<)
;; Linear arithmetic sees this as
;; (< lhs rhs), so we must check further
;; before we can tell if the 1+-trick
;; applies.
(simplify-ok-p-1 orig-term new-term
alist
mfc state))
((eq relation 'EQUAL)
;; Linear arithmetic sees this as
;; (and (<= lhs rhs) (<= rhs lhs)), so the
;; 1+-trick is not applicable.
t)
(t ; This shouldn't happen
nil)))
(t
;; We are rewriting the goal, but term does not
;; appear as a top-level literal in the goal.
;; However, if term is part of an if-expression or
;; some such it may appear at the top-level of the
;; next goal, so we leave it alone.
nil))))
(t
;; We are backchaining and we will not be using linear
;; arithmetic (obj is '?). We may as well go ahead and
;; simplify.
t))))
|