1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
|
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; common.lisp
;;;
;;; This book contains some functions common to normalize.lisp and
;;; simplify.lisp.
;;;
;;; We wish to be able to ``combine like pieces'' of sums and products
;;; as well as of equalities and inequatities between them. A couple
;;; of simple examples:
;;;
;;; ``normalization:''
;;; (+ x (* 3 x)) ==> (* 4 x)
;;;
;;; ``simplification:''
;;; (< (* x (expt y n)) (* y z)) ==> (cond ((equal y 0)
;;; nil)
;;; ((< 0 y)
;;; (< (* x (expt y (+ -1 n)))
;;; (fix z)))
;;; (t
;;; (< (fix z)
;;; (* x (expt y (+ -1 n))))))
;;;
;;; The four files common.lisp, normalize.lisp, simplify.lisp, and
;;; collect.lisp cooperate to achieve this. The strategy we use
;;; follows several steps. We first describe ``normalization.''
;;;
;;; Normalization is the combining of like pieces within an individual
;;; sum or product.
;;;
;;; Step 1. We look for pairs of addends or factors which are like
;;; each other, i.e., have matching patterns. The functions in this
;;; file define how to extract a piece's pattern and how to determine
;;; if two patterns match. The simplest of these functions are
;;; addend-pattern and matching-addend-p. The pattern of an addend is
;;; its ``variable part:''
;;;
;;; x ==> x
;;; (- (* x y)) ==> (* x y)
;;; (* 3 (foo x)) ==> (foo x)
;;;
;;; Two addend patterns match if they are non-constant and equal.
;;; That is, 3 does not match with 3, and (foo x) matches only with
;;; (foo x). The other pattern extraction and matching functions
;;; follow a similar spirit but are more complicated. Note that this
;;; process does not have to be as inefficient as it seems at first
;;; glance, since ACL2 rewrites from the inside-out. We therefore
;;; only need to check whether the left-most addend or factor matches
;;; with anything else. All the rest has already been normalized.
;;;
;;; Step 2. Let us assume that we are examining the expression
;;; (+ x y), where y may itself be a sum, and that x matches y or
;;; some addend inside it. We form the new expression:
;;; (+ (bubble-down x match) y)
;;; where match is the matching addend.
;;; Bubble-down is a ``dummy'' function which is the identity on its
;;; first argument. This function is disabled and all that ACL2 knows
;;; about it is how to ``bubble-down'' (named after the operation used
;;; in a bubble sort) is how to bring it along side the addend match.
;;; Once it is brought along side the addend match, ACL2 forms an
;;; expression similar to:
;;; (+ (collect-+ x match) z)
;;; See the various bubble-down-xxx rules in collect.lisp.
;;;
;;; Step 3. The addends of the expression (collect-+ x match) are
;;; combined appropriately. See the various collect-xxx rules in
;;; collect.lisp.
;;;
;;; Simplification is the combining of like pieces accross an equality
;;; or inequality. The strategy used is an elaboration of that for
;;; normalization.
;;;
;;; Step 1. Form a list of the patterns found on each side of the
;;; equality or inequality, and find the first match. Then add or
;;; multiply as appropriate both sides of the equality or inequality
;;; by the inverse of the smaller matching pieces. The inverse of
;;; an addend x is (- x), and the inverse of a factor x is (/ x).
;;; The variable x is smaller than (* 3 x) or (expt x n).
;;;
;;; Step 2. Each side of the equality or inequality is now treated
;;; as above.
;;;
;;; This multi step process has made the writing and verifying of
;;; these rules much easier than earlier trials. In particular,
;;; writing and verifying meta rules such as those in meta or
;;; arithmetic-2/meta was quite a task. Furthermore, the result of a
;;; meta rule is rewritten completely from the inside out which was
;;; quite inefficient at times. The disadvantge of this strategy is
;;; that it is not easy to ensure that one has a sufficient variety of
;;; collect-xxx rules, and we did in fact miss some in earlier versions
;;; of these books. We (again) believe that we have now sufficient
;;; coverage.
;;;
;;; We document the functions in this book only lightly if at all. It
;;; is not clear that english is well suited to such tasks. There are
;;; a lot of cases (each one simple), and I find the code at least as
;;; clear as any english description I have been able to generate.
;;; Read the code and try running various examples.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(include-book "building-blocks")
(local
(include-book "../../support/top"))
(table acl2-defaults-table :state-ok t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun collect-+ (x y)
(declare (xargs :guard (and (acl2-numberp x)
(acl2-numberp y))))
(+ x y))
(defun collect-* (x y)
(declare (xargs :guard (and (acl2-numberp x)
(acl2-numberp y))))
(* x y))
(defun bubble-down (x match)
(declare (xargs :guard t))
(declare (ignore match))
x)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; addend patterns
(defun addend-pattern (addend)
(declare (xargs :guard t))
(cond ((variablep addend)
addend)
((fquotep addend)
addend)
((eq (ffn-symb addend) 'UNARY--)
(arg1 addend))
((and (eq (ffn-symb addend) 'BINARY-*)
(rational-constant-p (arg1 addend)))
(arg2 addend))
(t
addend)))
(defun matching-addend-patterns-p (pattern-1 pattern-2)
(declare (xargs :guard t))
(cond ((quotep pattern-1)
nil)
(t
(equal pattern-1 pattern-2))))
(defun matching-addend-p (pattern addend)
(declare (xargs :guard t))
(let ((addend-pattern (addend-pattern addend)))
(matching-addend-patterns-p pattern addend-pattern)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun factor-pattern-base (x)
(declare (xargs :guard t))
(cond ((variablep x)
x)
((and (fquotep x)
(consp (cdr x)))
(if (and (power-of-2 x)
(not (equal x ''1))
(not (equal x ''-1)))
2
(unquote x)))
(t
x)))
(defun matching-exponents (exp-1 exp-2)
(declare (xargs :guard t))
(equal (addend-pattern exp-1)
(addend-pattern exp-2)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; factor patterns --- gather exponents
(defun factor-pattern-gather-exponents (factor)
(declare (xargs :guard t))
(cond ((variablep factor)
factor)
((and (fquotep factor)
(consp (cdr factor)))
(cond ((and (power-of-2-generalized factor)
(not (equal factor ''1))
(not (equal factor ''-1)))
2) ; powers of 2 are handled specially.
((rational-constant-p factor)
(abs (unquote factor)))
(t
(unquote factor))))
((eq (ffn-symb factor) 'UNARY-/)
(factor-pattern-gather-exponents (arg1 factor)))
((eq (ffn-symb factor) 'EXPT)
(let ((base (factor-pattern-base (arg1 factor)))
(exponent (arg2 factor)))
(if (acl2-numberp base)
`(EXPT-WITH-CONST-BASE ,base ,exponent)
base)))
(t
factor)))
(defun matching-factor-gather-exponents-patterns-p (pattern-1 pattern-2)
(declare (xargs :guard t))
(cond ((acl2-numberp pattern-1)
(and (not (equal pattern-1 0))
(eq (fn-symb pattern-2) 'EXPT-WITH-CONST-BASE)
(equal pattern-1 (arg1 pattern-2))))
((eq (fn-symb pattern-1) 'EXPT-WITH-CONST-BASE)
(cond ((equal (arg1 pattern-1) 0)
nil)
((equal (arg1 pattern-1) pattern-2)
t)
((eq (fn-symb pattern-2) 'EXPT-WITH-CONST-BASE)
(or (equal (arg1 pattern-1) (arg1 pattern-2))
(equal (arg2 pattern-1) (arg2 pattern-2))))
(t
nil)))
(t
(equal pattern-1 pattern-2))))
(defun matching-factor-gather-exponents-p (pattern factor)
(declare (xargs :guard t))
(let ((factor-pattern (factor-pattern-gather-exponents factor)))
(matching-factor-gather-exponents-patterns-p pattern factor-pattern)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; factor patterns --- scatter exponents
(defun factor-pattern-scatter-exponents (factor)
(declare (xargs :guard t))
(cond ((variablep factor)
factor)
((fquotep factor)
0) ; Doesn't matter, because we do not match numbers.
((eq (ffn-symb factor) 'UNARY-/)
(factor-pattern-scatter-exponents (arg1 factor)))
((eq (ffn-symb factor) 'EXPT)
(let ((base (factor-pattern-base (arg1 factor)))
(exponent (arg2 factor)))
(cond ((acl2-numberp base)
`(EXPT-WITH-CONST-BASE ,base ,exponent))
((quotep exponent) ; Presumably too large to expand
base)
(t
`(EXPT ,base ,exponent)))))
(t
factor)))
(defun matching-factor-scatter-exponents-patterns-p (pattern-1 pattern-2)
(declare (xargs :guard t))
(cond ((acl2-numberp pattern-1)
nil)
((eq (fn-symb pattern-1) 'EXPT-WITH-CONST-BASE)
(cond ((equal (arg1 pattern-1) 0)
nil)
((eq (fn-symb pattern-2) 'EXPT-WITH-CONST-BASE)
(matching-exponents (arg2 pattern-1) (arg2 pattern-2)))
(t
nil)))
((eq (fn-symb pattern-1) 'EXPT)
(cond ((equal (arg1 pattern-1) 0)
nil)
((eq (fn-symb pattern-2) 'EXPT)
(and (equal (arg1 pattern-1) (arg1 pattern-2))
(matching-exponents (arg2 pattern-1) (arg2 pattern-2))))
(t
nil)))
(t
(equal pattern-1 pattern-2))))
(defun matching-factor-scatter-exponents-p (pattern factor)
(declare (xargs :guard t))
(let ((factor-pattern (factor-pattern-scatter-exponents factor)))
(matching-factor-scatter-exponents-patterns-p pattern factor-pattern)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; we now include a bunch of stuff that used to be in simplify.lisp.
;;; We want to use these pieces in floor-mod.llisp. It really should
;;; be cleaned up.
(defun good-val-triple-p (x)
(declare (xargs :guard t))
(and (consp x)
(real/rationalp (car x))
(consp (cdr x))
(real/rationalp (cadr x))
(consp (cddr x))
(real/rationalp (caddr x))))
(defun val-< (x y)
(declare (xargs :guard (and (good-val-triple-p x)
(good-val-triple-p y))))
;; x and y are triples of rationals. We use a dictionary type
;;order.
(cond ((< (car x) (car y))
t)
((< (car y) (car x))
nil)
((< (cadr x) (cadr y))
t)
((< (cadr y) (cadr x))
nil)
((< (caddr x) (caddr y))
t)
(t
nil)))
(defun info-entry-p (x)
(declare (xargs :guard t))
(and (true-listp x)
(good-val-triple-p (cadr x))))
(defun info-list-p (x)
(declare (xargs :guard t))
(if (consp x)
(and (info-entry-p (car x))
(info-list-p (cdr x)))
(eq x nil)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun factor-val-gather-exponents1 (exponent)
(declare (xargs :guard t
:verify-guards nil))
(cond ((variablep exponent)
1)
((rational-constant-p exponent)
(abs (unquote exponent)))
((eq (ffn-symb exponent) 'BINARY-*)
(if (rational-constant-p (arg1 exponent))
(abs (unquote (arg1 exponent)))
1))
((eq (ffn-symb exponent) 'BINARY-+)
(+ (factor-val-gather-exponents1 (arg1 exponent))
(factor-val-gather-exponents1 (arg2 exponent))))
(t
1)))
(local
(defthm factor-val-gather-exponents1-thm
(acl2-numberp (factor-val-gather-exponents1 x))))
(verify-guards factor-val-gather-exponents1)
(defun factor-val-gather-exponents (factor)
(declare (xargs :guard t))
(cond ((variablep factor)
(list 0 1 0))
((constant-p factor)
(let ((val (unquote factor)))
(if (rationalp val) ; OK to use instead of real/rationalp because there all realp *constants* are rationalp
(list 0 0 (abs val))
(list 0 0 1))))
((eq (ffn-symb factor) 'UNARY-/)
(factor-val-gather-exponents (arg1 factor)))
((eq (ffn-symb factor) 'UNARY--)
(factor-val-gather-exponents (arg1 factor)))
((eq (ffn-symb factor) 'EXPT)
(list (factor-val-gather-exponents1 (arg2 factor)) 0 0))
(t
(list 0 1 0))))
(defun factor-val-scatter-exponents1 (exponent)
(declare (xargs :guard t
:verify-guards nil))
(cond ((variablep exponent)
1)
((rational-constant-p exponent)
(abs (unquote exponent)))
((eq (ffn-symb exponent) 'BINARY-*)
(if (rational-constant-p (arg1 exponent))
(abs (unquote (arg1 exponent)))
1))
((eq (ffn-symb exponent) 'BINARY-+)
(+ (factor-val-scatter-exponents1 (arg1 exponent))
(factor-val-scatter-exponents1 (arg2 exponent))))
(t
1)))
(local
(defthm factor-val-scatter-exponents1-thm
(acl2-numberp (factor-val-scatter-exponents1 x))))
(verify-guards factor-val-scatter-exponents1)
(defun factor-val-scatter-exponents (factor)
(declare (xargs :guard t))
(cond ((variablep factor)
(list 0 1 0))
((constant-p factor)
(let ((val (unquote factor)))
(if (rationalp val) ; Again OK. No non-rationalp realp constants
(list 0 0 (abs val))
(list 0 0 1))))
((eq (ffn-symb factor) 'UNARY-/)
(factor-val-scatter-exponents (arg1 factor)))
((eq (ffn-symb factor) 'UNARY--)
(factor-val-scatter-exponents (arg1 factor)))
((eq (ffn-symb factor) 'EXPT)
(list (factor-val-scatter-exponents1 (arg2 factor)) 0 0))
(t
(list 0 1 0))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun factor-gather-exponents-info-entry (x)
(declare (xargs :guard t))
(list (factor-pattern-gather-exponents x)
(factor-val-gather-exponents x)
x))
(defun assoc-factor-gather-exponents (x info-list)
(declare (xargs :guard (info-list-p info-list)))
(cond ((endp info-list)
nil)
((matching-factor-gather-exponents-patterns-p x (caar info-list))
(car info-list))
(t
(assoc-factor-gather-exponents x (cdr info-list)))))
(defun factor-gather-exponents-intersect-info-lists (info-list1 info-list2)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-gather-exponents (caar info-list1) info-list2)))
(cond ((not temp)
(factor-gather-exponents-intersect-info-lists (cdr info-list1)
info-list2))
((val-< (cadr temp) (cadr (car info-list1)))
(cons temp
(factor-gather-exponents-intersect-info-lists (cdr info-list1)
info-list2)))
(t
(cons (car info-list1)
(factor-gather-exponents-intersect-info-lists (cdr info-list1)
info-list2)))))))
(defun factor-gather-exponents-info-list (x)
(declare (xargs :guard t
:verify-guards nil))
(cond ((eq (fn-symb x) 'BINARY-+)
(let ((temp (factor-gather-exponents-info-list (arg2 x))))
(if temp
(factor-gather-exponents-intersect-info-lists
temp
(factor-gather-exponents-info-list (arg1 x)))
nil)))
((eq (fn-symb x) 'BINARY-*)
(cons (factor-gather-exponents-info-entry (arg1 x))
(factor-gather-exponents-info-list (arg2 x))))
((eq (fn-symb x) 'UNARY--)
(factor-gather-exponents-info-list (arg1 x)))
(t
(list (factor-gather-exponents-info-entry x)))))
(local
(encapsulate
()
(local
(defthm temp-1
(implies (and (info-list-p info-list)
(assoc-factor-gather-exponents x info-list))
(info-entry-p (assoc-factor-gather-exponents x info-list)))))
(local
(defthm temp-2
(implies (and (info-list-p info-list-1)
(info-list-p info-list-2))
(info-list-p (factor-gather-exponents-intersect-info-lists
info-list-1
info-list-2)))))
(local
(defthm temp-3
(rationalp (factor-val-gather-exponents1 x))))
(local
(defthm temp-4
(good-val-triple-p (factor-val-gather-exponents x))))
(defthm factor-gather-exponents-info-list-thm
(info-list-p (factor-gather-exponents-info-list x)))
))
(verify-guards factor-gather-exponents-info-list)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun first-match-in-factor-gather-exponents-info-lists (info-list1 info-list2
mfc state)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))
:guard-hints (("Goal" :in-theory (disable good-val-triple-p
invert-match
val-<)))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-gather-exponents (car (car info-list1)) info-list2)))
(if temp
(cond ((and ;; We want the ``smaller'' match
(val-< (cadr (car info-list1))
(cadr temp))
;; prevent various odd loops
(stable-under-rewriting-products (invert-match
(caddr (car info-list1)))
mfc state))
(list (cons 'x (invert-match (caddr (car info-list1))))))
((stable-under-rewriting-products (invert-match
(caddr temp))
mfc state)
(list (cons 'x (invert-match (caddr temp)))))
(t
(first-match-in-factor-gather-exponents-info-lists
(cdr info-list1) info-list2
mfc state)))
(first-match-in-factor-gather-exponents-info-lists (cdr info-list1) info-list2
mfc state)))))
(defun find-matching-factors-gather-exponents (lhs rhs mfc state)
(declare (xargs :guard t
:verify-guards nil))
(let* ((info-list1 (factor-gather-exponents-info-list lhs))
(info-list2 (if info-list1
(factor-gather-exponents-info-list rhs)
nil)))
(if info-list2
(first-match-in-factor-gather-exponents-info-lists info-list1
info-list2
mfc state)
nil)))
(verify-guards find-matching-factors-gather-exponents)
(defun first-rational-match-in-factor-gather-exponents-info-lists
(info-list1 info-list2 mfc state)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))
:guard-hints (("Goal" :in-theory (disable good-val-triple-p
invert-match
val-<)))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-gather-exponents (car (car info-list1)) info-list2)))
(if (and temp
(proveably-real/rational 'x `((x . ,(caddr temp))) mfc state))
(cond ((and ;; We want the ``smaller'' match
(val-< (cadr (car info-list1))
(cadr temp))
;; prevent various odd loops
(stable-under-rewriting-products (invert-match
(caddr (car info-list1)))
mfc state))
(list (cons 'x (invert-match (caddr (car info-list1))))))
((stable-under-rewriting-products (invert-match
(caddr temp))
mfc state)
(list (cons 'x (invert-match (caddr temp)))))
(t
(first-rational-match-in-factor-gather-exponents-info-lists
(cdr info-list1) info-list2
mfc state)))
(first-rational-match-in-factor-gather-exponents-info-lists (cdr info-list1) info-list2
mfc state)))))
(defun find-rational-matching-factors-gather-exponents (lhs rhs mfc state)
(declare (xargs :guard t
:verify-guards nil))
(let* ((info-list1 (factor-gather-exponents-info-list lhs))
(info-list2 (if info-list1
(factor-gather-exponents-info-list rhs)
nil)))
(if info-list2
(first-rational-match-in-factor-gather-exponents-info-lists info-list1
info-list2
mfc state)
nil)))
(verify-guards find-rational-matching-factors-gather-exponents)
(defun first-non-zero-rational-match-in-factor-gather-exponents-info-lists
(info-list1 info-list2 mfc state)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))
:guard-hints (("Goal" :in-theory (disable good-val-triple-p
invert-match
val-<)))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-gather-exponents (car (car info-list1)) info-list2)))
(if (and temp
(proveably-non-zero-real/rational 'x `((x . ,(caddr temp))) mfc state))
(cond ((and ;; We want the ``smaller'' match
(val-< (cadr (car info-list1))
(cadr temp))
;; prevent various odd loops
(stable-under-rewriting-products (invert-match
(caddr (car info-list1)))
mfc state))
(list (cons 'x (invert-match (caddr (car info-list1))))))
((stable-under-rewriting-products (invert-match
(caddr temp))
mfc state)
(list (cons 'x (invert-match (caddr temp)))))
(t
(first-non-zero-rational-match-in-factor-gather-exponents-info-lists
(cdr info-list1) info-list2
mfc state)))
(first-non-zero-rational-match-in-factor-gather-exponents-info-lists (cdr info-list1) info-list2
mfc state)))))
(defun find-non-zero-rational-matching-factors-gather-exponents (lhs rhs mfc state)
(declare (xargs :guard t
:verify-guards nil))
(let* ((info-list1 (factor-gather-exponents-info-list lhs))
(info-list2 (if info-list1
(factor-gather-exponents-info-list rhs)
nil)))
(if info-list2
(first-non-zero-rational-match-in-factor-gather-exponents-info-lists info-list1
info-list2
mfc state)
nil)))
(verify-guards find-non-zero-rational-matching-factors-gather-exponents)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun factor-scatter-exponents-info-entry (x)
(declare (xargs :guard t))
(list (factor-pattern-scatter-exponents x)
(factor-val-scatter-exponents x)
x))
(defun assoc-factor-scatter-exponents (x info-list)
(declare (xargs :guard (info-list-p info-list)))
(cond ((endp info-list)
nil)
((matching-factor-scatter-exponents-patterns-p x (caar info-list))
(car info-list))
(t
(assoc-factor-scatter-exponents x (cdr info-list)))))
;; I should speed this guard proof up.
(local
(in-theory (disable MATCHING-FACTOR-SCATTER-EXPONENTS-PATTERNS-P)))
(defun factor-scatter-exponents-intersect-info-lists (info-list1 info-list2)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-scatter-exponents (caar info-list1) info-list2)))
(cond ((not temp)
(factor-scatter-exponents-intersect-info-lists (cdr info-list1)
info-list2))
((val-< (cadr temp) (cadr (car info-list1)))
(cons temp
(factor-scatter-exponents-intersect-info-lists (cdr info-list1)
info-list2)))
(t
(cons (car info-list1)
(factor-scatter-exponents-intersect-info-lists (cdr info-list1)
info-list2)))))))
(defun factor-scatter-exponents-info-list (x)
(declare (xargs :guard t
:verify-guards nil))
(cond ((eq (fn-symb x) 'BINARY-+)
(let ((temp (factor-scatter-exponents-info-list (arg2 x))))
(if temp
(factor-scatter-exponents-intersect-info-lists
temp
(factor-scatter-exponents-info-list (arg1 x)))
nil)))
((eq (fn-symb x) 'UNARY--)
(factor-gather-exponents-info-list (arg1 x)))
((eq (fn-symb x) 'BINARY-*)
(cons (factor-scatter-exponents-info-entry (arg1 x))
(factor-scatter-exponents-info-list (arg2 x))))
(t
(list (factor-scatter-exponents-info-entry x)))))
;;; I should spped this up also.
(local
(encapsulate
()
(local
(defthm temp-1
(implies (and (info-list-p info-list)
(assoc-factor-scatter-exponents x info-list))
(info-entry-p (assoc-factor-scatter-exponents x info-list)))))
(local
(defthm temp-2
(implies (and (info-list-p info-list-1)
(info-list-p info-list-2))
(info-list-p (factor-scatter-exponents-intersect-info-lists
info-list-1
info-list-2)))))
(local
(defthm temp-3
(rationalp (factor-val-scatter-exponents1 x))))
(local
(defthm temp-4
(good-val-triple-p (factor-val-scatter-exponents x))))
(defthm factor-scatter-exponents-info-list-thm
(info-list-p (factor-scatter-exponents-info-list x5)))
))
(verify-guards factor-scatter-exponents-info-list)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Another one to speed up.
(defun first-match-in-factor-scatter-exponents-info-lists (info-list1 info-list2
mfc state)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))
:guard-hints (("Goal" :in-theory (disable good-val-triple-p
invert-match
val-<)))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-scatter-exponents (car (car info-list1)) info-list2)))
(if temp
(cond ((and ;; We want the ``smaller'' match
(val-< (cadr (car info-list1))
(cadr temp))
;; prevent various odd loops
(stable-under-rewriting-products (invert-match
(caddr (car info-list1)))
mfc state))
(list (cons 'x (invert-match (caddr (car info-list1))))))
((stable-under-rewriting-products (invert-match
(caddr temp))
mfc state)
(list (cons 'x (invert-match (caddr temp)))))
(t
(first-match-in-factor-scatter-exponents-info-lists
(cdr info-list1) info-list2
mfc state)))
(first-match-in-factor-scatter-exponents-info-lists (cdr info-list1) info-list2
mfc state)))))
(defun find-matching-factors-scatter-exponents (lhs rhs mfc state)
(declare (xargs :guard t
:verify-guards nil))
(let* ((info-list1 (factor-scatter-exponents-info-list lhs))
(info-list2 (if info-list1
(factor-scatter-exponents-info-list rhs)
nil)))
(if info-list2
(first-match-in-factor-scatter-exponents-info-lists info-list1
info-list2
mfc state)
nil)))
(verify-guards find-matching-factors-scatter-exponents)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Speed this up also.
(defun first-rational-match-in-factor-scatter-exponents-info-lists
(info-list1 info-list2 mfc state)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))
:guard-hints (("Goal" :in-theory (disable good-val-triple-p
invert-match
val-<)))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-scatter-exponents (car (car info-list1)) info-list2)))
(if (and temp
(proveably-real/rational 'x `((x . ,(caddr temp))) mfc state))
(cond ((and ;; We want the ``smaller'' match
(val-< (cadr (car info-list1))
(cadr temp))
;; prevent various odd loops
(stable-under-rewriting-products (invert-match
(caddr (car info-list1)))
mfc state))
(list (cons 'x (invert-match (caddr (car info-list1))))))
((stable-under-rewriting-products (invert-match
(caddr temp))
mfc state)
(list (cons 'x (invert-match (caddr temp)))))
(t
(first-rational-match-in-factor-scatter-exponents-info-lists
(cdr info-list1) info-list2
mfc state)))
(first-rational-match-in-factor-scatter-exponents-info-lists (cdr info-list1) info-list2
mfc state)))))
(defun find-rational-matching-factors-scatter-exponents (lhs rhs mfc state)
(declare (xargs :guard t
:verify-guards nil))
(let* ((info-list1 (factor-scatter-exponents-info-list lhs))
(info-list2 (if info-list1
(factor-scatter-exponents-info-list rhs)
nil)))
(if info-list2
(first-rational-match-in-factor-scatter-exponents-info-lists info-list1
info-list2
mfc state)
nil)))
(verify-guards find-rational-matching-factors-scatter-exponents)
(defun first-non-zero-rational-match-in-factor-scatter-exponents-info-lists
(info-list1 info-list2 mfc state)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))
:guard-hints (("Goal" :in-theory (disable good-val-triple-p
invert-match
val-<)))))
(if (endp info-list1)
nil
(let ((temp (assoc-factor-scatter-exponents (car (car info-list1)) info-list2)))
(if (and temp
(proveably-non-zero-real/rational 'x `((x . ,(caddr temp))) mfc state))
(cond ((and ;; We want the ``smaller'' match
(val-< (cadr (car info-list1))
(cadr temp))
;; prevent various odd loops
(stable-under-rewriting-products (invert-match
(caddr (car info-list1)))
mfc state))
(list (cons 'x (invert-match (caddr (car info-list1))))))
((stable-under-rewriting-products (invert-match
(caddr temp))
mfc state)
(list (cons 'x (invert-match (caddr temp)))))
(t
(first-non-zero-rational-match-in-factor-scatter-exponents-info-lists
(cdr info-list1) info-list2
mfc state)))
(first-non-zero-rational-match-in-factor-scatter-exponents-info-lists (cdr info-list1) info-list2
mfc state)))))
(defun find-non-zero-rational-matching-factors-scatter-exponents (lhs rhs mfc state)
(declare (xargs :guard t
:verify-guards nil))
(let* ((info-list1 (factor-scatter-exponents-info-list lhs))
(info-list2 (if info-list1
(factor-scatter-exponents-info-list rhs)
nil)))
(if info-list2
(first-non-zero-rational-match-in-factor-scatter-exponents-info-lists info-list1
info-list2
mfc state)
nil)))
(verify-guards find-non-zero-rational-matching-factors-scatter-exponents)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun arith-factor-pattern-scatter-exponents (factor)
(declare (xargs :guard t))
(cond ((variablep factor)
factor)
((fquotep factor)
0) ; Doesn't matter, because we do not match numbers.
((eq (ffn-symb factor) 'UNARY-/)
`(UNARY-/ ,(arith-factor-pattern-scatter-exponents (arg1 factor))))
((eq (ffn-symb factor) 'EXPT)
(let ((base (factor-pattern-base (arg1 factor)))
(exponent (arg2 factor)))
(if (acl2-numberp base)
(list 'EXPT-WITH-CONST-BASE base exponent)
(if (quotep exponent) ; Presumably too large to expand
base
`(EXPT ,base ,exponent)))))
(t
factor)))
(defun arith-matching-factor-scatter-exponents-patterns-p (pattern-1 pattern-2)
(declare (xargs :guard t))
(cond ((acl2-numberp pattern-1)
nil)
((eq (fn-symb pattern-1) 'EXPT-WITH-CONST-BASE)
(cond ((equal (arg1 pattern-1) 0)
nil)
((eq (fn-symb pattern-2) 'EXPT-WITH-CONST-BASE)
(matching-exponents (arg2 pattern-1) (arg2 pattern-2)))
((eq (fn-symb pattern-2) 'UNARY-/)
(matching-exponents pattern-1 (arg1 pattern-2)))
(t
nil)))
((eq (fn-symb pattern-1) 'EXPT)
(cond ((equal (arg1 pattern-1) 0)
nil)
((eq (fn-symb pattern-2) 'EXPT)
(and (equal (arg1 pattern-1) (arg1 pattern-2))
(matching-exponents (arg2 pattern-1) (arg2 pattern-2))))
((eq (fn-symb pattern-2) 'UNARY-/)
(let ((pattern-2-arg1 (arg1 pattern-2)))
(and (eq (fn-symb pattern-2-arg1) 'EXPT)
(equal (arg1 pattern-1) (arg1 pattern-2-arg1))
(matching-exponents (arg2 pattern-1) (arg2 pattern-2-arg1)))))
(t
nil)))
((eq (fn-symb pattern-1) 'UNARY-/)
(equal (arg1 pattern-1) pattern-2))
((eq (fn-symb pattern-2) 'UNARY-/)
(equal pattern-1 (arg1 pattern-2)))
(t
nil)))
(defun arith-matching-factor-scatter-exponents-p (pattern factor)
(declare (xargs :guard t))
(let ((factor-pattern (arith-factor-pattern-scatter-exponents factor)))
(arith-matching-factor-scatter-exponents-patterns-p pattern factor-pattern)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This is left over from some experiments with using factorization
;;; of constants to influence simplification. The idea was to
;;; simplify:
#|
(equal (* 15 x) (* 21 y))
to
(equal (* 5 x) (* 7 y))
||#
;;; but I never got things working to my satisfaction. This is probably
;;; worth revisiting some day --- perhaps in conjunction with
;;; simplify-ok-p to see what I can do when simplify-ok-p returns
;;; NIL.
;;; prime factorization
;;; used by factor pattern --- both gather and scatter
(defconst *first-1000-prime-numbers*
;; taken from http://primes.utm.edu/lists/small/1000.txt
'( 2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013
1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451
1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583
1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889
1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053
2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357
2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531
2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687
2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819
2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999
3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181
3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331
3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3511
3517 3527 3529 3533 3539 3541 3547 3557 3559 3571
3581 3583 3593 3607 3613 3617 3623 3631 3637 3643
3659 3671 3673 3677 3691 3697 3701 3709 3719 3727
3733 3739 3761 3767 3769 3779 3793 3797 3803 3821
3823 3833 3847 3851 3853 3863 3877 3881 3889 3907
3911 3917 3919 3923 3929 3931 3943 3947 3967 3989
4001 4003 4007 4013 4019 4021 4027 4049 4051 4057
4073 4079 4091 4093 4099 4111 4127 4129 4133 4139
4153 4157 4159 4177 4201 4211 4217 4219 4229 4231
4241 4243 4253 4259 4261 4271 4273 4283 4289 4297
4327 4337 4339 4349 4357 4363 4373 4391 4397 4409
4421 4423 4441 4447 4451 4457 4463 4481 4483 4493
4507 4513 4517 4519 4523 4547 4549 4561 4567 4583
4591 4597 4603 4621 4637 4639 4643 4649 4651 4657
4663 4673 4679 4691 4703 4721 4723 4729 4733 4751
4759 4783 4787 4789 4793 4799 4801 4813 4817 4831
4861 4871 4877 4889 4903 4909 4919 4931 4933 4937
4943 4951 4957 4967 4969 4973 4987 4993 4999 5003
5009 5011 5021 5023 5039 5051 5059 5077 5081 5087
5099 5101 5107 5113 5119 5147 5153 5167 5171 5179
5189 5197 5209 5227 5231 5233 5237 5261 5273 5279
5281 5297 5303 5309 5323 5333 5347 5351 5381 5387
5393 5399 5407 5413 5417 5419 5431 5437 5441 5443
5449 5471 5477 5479 5483 5501 5503 5507 5519 5521
5527 5531 5557 5563 5569 5573 5581 5591 5623 5639
5641 5647 5651 5653 5657 5659 5669 5683 5689 5693
5701 5711 5717 5737 5741 5743 5749 5779 5783 5791
5801 5807 5813 5821 5827 5839 5843 5849 5851 5857
5861 5867 5869 5879 5881 5897 5903 5923 5927 5939
5953 5981 5987 6007 6011 6029 6037 6043 6047 6053
6067 6073 6079 6089 6091 6101 6113 6121 6131 6133
6143 6151 6163 6173 6197 6199 6203 6211 6217 6221
6229 6247 6257 6263 6269 6271 6277 6287 6299 6301
6311 6317 6323 6329 6337 6343 6353 6359 6361 6367
6373 6379 6389 6397 6421 6427 6449 6451 6469 6473
6481 6491 6521 6529 6547 6551 6553 6563 6569 6571
6577 6581 6599 6607 6619 6637 6653 6659 6661 6673
6679 6689 6691 6701 6703 6709 6719 6733 6737 6761
6763 6779 6781 6791 6793 6803 6823 6827 6829 6833
6841 6857 6863 6869 6871 6883 6899 6907 6911 6917
6947 6949 6959 6961 6967 6971 6977 6983 6991 6997
7001 7013 7019 7027 7039 7043 7057 7069 7079 7103
7109 7121 7127 7129 7151 7159 7177 7187 7193 7207
7211 7213 7219 7229 7237 7243 7247 7253 7283 7297
7307 7309 7321 7331 7333 7349 7351 7369 7393 7411
7417 7433 7451 7457 7459 7477 7481 7487 7489 7499
7507 7517 7523 7529 7537 7541 7547 7549 7559 7561
7573 7577 7583 7589 7591 7603 7607 7621 7639 7643
7649 7669 7673 7681 7687 7691 7699 7703 7717 7723
7727 7741 7753 7757 7759 7789 7793 7817 7823 7829
7841 7853 7867 7873 7877 7879 7883 7901 7907 7919))
(local
(in-theory (enable natp)))
(encapsulate
()
(local
(defthm foo-0
(implies (and (not (zp x))
(real/rationalp y)
(<= 2 y))
(< (* x (/ y)) x))
:hints (("Goal" :in-theory (enable NORMALIZE-<-/-TO-*-3-3)))))
(local
(in-theory (disable foo-0)))
(defun prime-factors-2 (n i ith-prime factors)
(declare (xargs :guard (and (integerp i)
(<= 0 i))
:measure (nfix (+ (- 1001 i) n))
:hints (("Subgoal 2" :use (:instance foo-0
(x n)
(y ith-prime))
:in-theory (disable <-*-X-Y-Y)))))
(cond ((or (zp i)
(<= 1000 i)
(not (integerp n))
(not (integerp ith-prime))
(< ith-prime 2))
nil)
((< n (* ith-prime ith-prime))
(cons n factors))
((integerp (/ n ith-prime))
(prime-factors-2 (/ n ith-prime) i ith-prime
(cons ith-prime factors)))
((<= 998 i)
(cons n factors))
(t
(prime-factors-2 n (+ 1 i)
(nth (+ 1 i) *first-1000-prime-numbers*)
factors))))
)
(defun but-nth (list n)
(declare (xargs :guard (integerp n)))
(cond ((atom list)
nil)
((<= n 0)
(cdr list))
(t
(but-nth (cdr list) (+ -1 n)))))
(defun how-many-factors (x list ans)
;; [Jared]: Previously this was named "how-many." I changed its name to
;; avoid a conflict with, e.g., sorting/convert-perm-to-how-many.lisp, so
;; that we can include both books in the XDOC manual, etc.
(declare (xargs :guard (integerp ans)))
;; We assume that any instances of x appear at the head of list.
(cond ((atom list)
ans)
((equal (car list) x)
(how-many-factors x (cdr list) (+ 1 ans)))
(t
ans)))
(encapsulate
()
(local
(defthm foo-1
(implies (and (consp list)
(integerp ans))
(<= (+ 1 ans) (how-many-factors (car list) list ans)))))
(local
(defthm foo-2
(implies (and (<= 0 count)
(consp factors))
(< (ACL2-COUNT (BUT-NTH FACTORS
count))
(ACL2-COUNT FACTORS)))))
(local
(defthm foo-3
(implies (integerp ans)
(integerp (how-many-factors x list ans)))
:rule-classes :type-prescription))
(defun condense-factors (factors ans)
(declare (xargs :guard t))
(if (atom factors)
ans
(let ((count (how-many-factors (car factors) factors 0)))
(condense-factors (but-nth factors (+ -1 count))
(cons (cons (car factors) count)
ans)))))
)
(defun prime-factors-1 (n i ith-prime factors)
(declare (xargs :guard (and (integerp i)
(<= 0 i)
(integerp ith-prime))))
(condense-factors (prime-factors-2 n i ith-prime factors)
nil))
(defun prime-factors (n)
(declare (xargs :guard t))
;; We return a list of the prime factors of n.
;; There are some exceptions, however. Negative numbers have -1 as
;; a prime factor, -1, 0, and 1 have themselves as their ony prime
;; factors. Also, we do not check for prime factors larger than
;; 7919. In affect, we assume that any integer not divisible by one
;; of the first 1000 primes is itself prime.
;; This last exception, however, itself has an exception. We check
;; a table of factorizations containing factorizations for
;; (+ (expt 2 n) c), where 0 < n <= 64 and -3 <= c <= 3 on the
;; assumption that we will see these (at least for -1 <= c <= 1)
;; in proofs about hardware or bit-vectors.
(cond ((not (integerp n))
nil)
((equal n -1)
'((-1 . 1)))
((equal n 0)
'((0 . 1)))
((equal n 1)
`((1 . 1)))
((< 0 n)
(prime-factors-1 n 0 2 nil))
(t
(prime-factors-1 (- n) 0 2 '(-1)))))
|