1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; default-hint.lisp
;;;
;;; This book contains the definition of several default hints we will
;;; be using to control nonlinear arithmetic.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
(include-book "dynamic-e-d")
; Matt K. mod, Jan. 2019: The following is needed for the #+acl2-devel build,
; since nonlinearp-default-hint defined below is a :logic mode function that
; calls observation-cw.
(include-book "system/observation1-cw" :dir :system)
(table acl2-defaults-table :state-ok t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; When things have stabilized under simplification, enable non-linear
;;; arithmetic for one round (goal being simplified) only.
(defun nonlinearp-default-hint (stable-under-simplificationp hist pspv)
; Guard change for tau after ACL2 Version 5.0 by J Moore:
; The hideous guard below is just the expected guard for
; (access rewrite-constant
; (access prove-spec-var pspv :rewrite-constant)
; :nonlinearp)
; where, by ``expected,'' we mean to exclude the pathological cases allowing
; car and cdr to be applied to nil. Unfortuantely, the guard must be changed
; every time the locations of the two fields change in their respective
; defrecs. To get it, translate the access expression above and then write a
; consp of every subterm but the top-most. In addition, you must also change
; the guard on the definition of this function where it is found -- twice! --
; in books/hints/basic-tests.lisp.
(declare
(xargs
:guard
(and (consp pspv)
(consp (car pspv))
(consp (car (car pspv)))
(consp (cdr (car (car pspv))))
(consp (cdr (cdr (car (car pspv)))))
(consp (cdr (cdr (cdr (car (car pspv))))))
(consp (cdr (cdr (cdr (cdr (car (car pspv)))))))
(consp (cdr (cdr (cdr (cdr (cdr (car (car pspv))))))))
(consp (cdr (cdr (cdr (cdr (cdr (cdr (car (car pspv)))))))))
(consp (car (cdr (cdr (cdr (cdr (cdr (cdr (car (car pspv)))))))))))))
(cond (stable-under-simplificationp
(if (not (access rewrite-constant
(access prove-spec-var pspv :rewrite-constant)
:nonlinearp))
(prog2$
(observation-cw
'nonlinearp-default-hint
"We now enable non-linear arithmetic.")
'(:computed-hint-replacement t
:nonlinearp t))
nil))
((access rewrite-constant
(access prove-spec-var pspv :rewrite-constant)
:nonlinearp)
(if (and (consp hist)
(consp (car hist))
;; Without this, we would loop forever. But
;; whenever I try to write an explanation, I get
;; confused about why it works. I stumbled across
;; this by trial and error and observing the output
;; of tracing. Some day I should figure out what I
;; am doing.
(not (equal (caar hist) 'SETTLED-DOWN-CLAUSE)))
(prog2$
(observation-cw
'nonlinearp-default-hint
"We now disable non-linear arithmetic.")
'(:computed-hint-replacement t
:nonlinearp nil))
nil))
(t
nil)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; I should document this better.
;;; Note: Consider leaving prefer-positive-exponents enabled.
;;; But, how do I ensure that this is not undone by some user-given
;;; :in-theory hint?
(defun arithmetic-default-hint (stable-under-simplificationp hist last-hint-used)
; (declare (xargs :guard (and (consp pspv)
; (consp (car pspv))
; (consp (caar pspv))
; (consp (cdaar pspv))
; (consp (car (cdaar pspv)))
; (consp (caar (cdaar pspv)))
; (consp (cdaar (cdaar pspv)))
; (alistp (cddaar (cdaar pspv))))))
(declare (xargs :mode :program))
(cond (stable-under-simplificationp
(cond ((equal last-hint-used nil)
(prog2$
(observation-cw
'arithmetic-default-hint
"We now enable prefer-positive-exponents.")
(let ((e/d '(((:REWRITE prefer-positive-exponents-scatter-exponents-equal)
(:REWRITE prefer-positive-exponents-scatter-exponents-<)
(:rewrite PREFER-POSITIVE-EXPONENTS-SCATTER-EXPONENTS-<-2)
(:REWRITE |(expt x (+ m n))|)
(:REWRITE |(expt x (+ m n)) non-zero (+ m n)|)
(:REWRITE |(expt x (+ m n)) non-zero x|)
;;(:REWRITE |(expt x (+ m n)) non-pos m and n|)
;;(:REWRITE |(expt x (+ m n))) non-neg m and n|)
(:REWRITE normalize-factors-scatter-exponents)
(:REWRITE simplify-products-scatter-exponents-equal)
(:REWRITE simplify-products-scatter-exponents-<))
((:REWRITE normalize-factors-gather-exponents)
(:REWRITE simplify-products-gather-exponents-equal)
(:REWRITE simplify-products-gather-exponents-<)))))
`(:computed-hint-replacement ((arithmetic-default-hint
stable-under-simplificationp
hist
'prefer-positive-addends))
;; I am surprised that a quote
;; is not needed here, i.e.,
;; :dynamic-e/d ',e/d
:dynamic-e/d ,e/d
:nonlinearp nil))))
((equal last-hint-used 'prefer-positive-addends)
(prog2$
(observation-cw
'arithmetic-default-hint
"We now enable non-linear arithmetic.")
`(:computed-hint-replacement ((arithmetic-default-hint
stable-under-simplificationp
hist 'non-linear-arithmetic))
:nonlinearp t)))
(t
nil)))
((and (equal last-hint-used 'non-linear-arithmetic)
(consp hist)
(consp (car hist))
(not (equal (caar hist) 'SETTLED-DOWN-CLAUSE)))
(prog2$
(observation-cw
'arithmetic-default-hint
"We now disable non-linear arithmetic and return to the earlier ~
enabled theory.")
(let ((e/d '(((:REWRITE normalize-factors-gather-exponents)
(:REWRITE simplify-products-gather-exponents-equal)
(:REWRITE simplify-products-gather-exponents-<))
((:REWRITE prefer-positive-exponents-scatter-exponents-equal)
(:REWRITE prefer-positive-exponents-scatter-exponents-<)
(:rewrite PREFER-POSITIVE-EXPONENTS-SCATTER-EXPONENTS-<-2)
(:REWRITE |(expt x (+ m n))|)
(:REWRITE |(expt x (+ m n)) non-zero (+ m n)|)
(:REWRITE |(expt x (+ m n)) non-zero x|)
;;(:REWRITE |(expt x (+ m n)) non-pos m and n|)
;;(:REWRITE |(expt x (+ m n))) non-neg m and n|)
(:REWRITE normalize-factors-scatter-exponents)
(:REWRITE simplify-products-scatter-exponents-equal)
(:REWRITE simplify-products-scatter-exponents-<)))))
`(:computed-hint-replacement ((arithmetic-default-hint
stable-under-simplificationp
hist nil))
;; I am surprised that a quote
;; is not needed here, i.e.,
;; :dynamic-e/d ',e/d
:dynamic-e/d ,e/d
:nonlinearp nil))))
(t
nil)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; I would like to experiment with :or hints. But I cannot use
;;; :computed-hint-replacement within an :or hint, so I need to use
;;; the same replacement on both branches. Therefore, I need to keep
;;; track of where I am some other way than passing around extra
;;; flags. Luckily, the goal spec gives it away.
(defun first-inductive-subgoal-p (id)
(declare (xargs :guard (and (consp id)
(consp (cdr id)))))
(and (< 1 (len (car id))) ; We are inducting
(equal 1 (len (cadr id))) ; No splits
(equal 0 (cddr id))))
(defun branch-taken1 (x ans)
(declare (xargs :guard (true-listp x)))
(cond ((endp x)
ans)
((equal (car x) 'D1)
(branch-taken1 (cdr x) 1))
((equal (car x) 'D2)
(branch-taken1 (cdr x) 2))
(t
(branch-taken1 (cdr x) ans))))
(defun branch-taken (id)
(declare (xargs :guard (and (consp id)
(consp (cdr id))
(true-listp (cadr id)))))
(branch-taken1 (cadr id) nil))
(defun nonlinearp-default-hint++ (id stable-under-simplificationp hist last-hint-used)
; (declare (xargs :guard (and (consp id)
; (consp (cdr id))
; (true-listp (cadr id))
; (consp pspv)
; (consp (car pspv))
; (consp (caar pspv))
; (consp (cdaar pspv))
; (consp (car (cdaar pspv)))
; (consp (caar (cdaar pspv)))
; (consp (cdaar (cdaar pspv)))
; (alistp (cddaar (cdaar pspv))))))
(declare (xargs :mode :program))
(cond ;;(first-inductive-subgoal-p id)
;;...)
(stable-under-simplificationp
(cond ((equal last-hint-used nil)
(prog2$
(observation-cw
'nonlinearp-default-hint++
"Branch.")
(let ((e/d '(((:REWRITE prefer-positive-exponents-scatter-exponents-equal)
(:REWRITE prefer-positive-exponents-scatter-exponents-<)
(:rewrite PREFER-POSITIVE-EXPONENTS-SCATTER-EXPONENTS-<-2)
(:REWRITE |(expt x (+ m n))|)
(:REWRITE |(expt x (+ m n)) non-zero (+ m n)|)
(:REWRITE |(expt x (+ m n)) non-zero x|)
;;(:REWRITE |(expt x (+ m n)) non-pos m and n|)
;;(:REWRITE |(expt x (+ m n))) non-neg m and n|)
(:REWRITE normalize-factors-scatter-exponents)
(:REWRITE simplify-products-scatter-exponents-equal)
(:REWRITE simplify-products-scatter-exponents-<))
((:REWRITE normalize-factors-gather-exponents)
(:REWRITE simplify-products-gather-exponents-equal)
(:REWRITE simplify-products-gather-exponents-<)))))
`(:computed-hint-replacement ((nonlinearp-default-hint++ id
stable-under-simplificationp
hist 'check-branch-taken))
;; I am surprised that a quote
;; is not needed here, i.e.,
;; :dynamic-e/d ',e/d
:or ((:dynamic-e/d ,e/d
:nonlinearp nil)
(:nonlinearp t))))))
((equal last-hint-used 'prefer-positive-exponents)
(prog2$
(observation-cw
'nonlinearp-default-hint++
"Prefer-positive-exponents.")
`(:computed-hint-replacement ((nonlinearp-default-hint++ id
stable-under-simplificationp
hist 'non-linear-arithmetic))
:nonlinearp t)))
((equal last-hint-used 'recycle)
(prog2$
(observation-cw
'nonlinearp-default-hint++
"Recycle.")
`(:computed-hint-replacement ((nonlinearp-default-hint++ id
stable-under-simplificationp
hist 'non-linear-arithmetic))
:nonlinearp t)))
(t
nil)))
((equal last-hint-used 'check-branch-taken)
(let ((branch-taken (branch-taken id)))
(cond ((equal branch-taken 2)
(prog2$
(observation-cw
'nonlinearp-default-hint++
"Check-branch-taken prefer-positive-exponents.")
`(:computed-hint-replacement ((nonlinearp-default-hint++ id
stable-under-simplificationp
hist 'prefer-positive-exponents))
:no-op t)))
((equal branch-taken 1)
(prog2$
(observation-cw
'nonlinearp-default-hint++
"Check-branch-taken non-linear-arithmetic.")
`(:computed-hint-replacement ((nonlinearp-default-hint++ id
stable-under-simplificationp
hist 'recycle))
:nonlinearp nil)))
(t
(cw "~%~%~ [Note: Computed hint error --- seemingly impossible ~
case reached in nonlinearp-default-hint++. Perhaps there ~
are two or more :OR hints interacting in unexpected ways. ~
We do not know what to do here, and so are defaulting to ~
doing nothing.~%~%")))))
((and (equal last-hint-used 'non-linear-arithmetic)
(consp hist)
(consp (car hist))
(not (equal (caar hist) 'SETTLED-DOWN-CLAUSE)))
(prog2$
(observation-cw
'nonlinearp-default-hint++
"Non-linear-arithmetic.")
`(:computed-hint-replacement ((nonlinearp-default-hint++ id
stable-under-simplificationp
hist 'recycle))
:nonlinearp nil)))
(t
nil)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The rest of this file is not used at the present. I leave it here
;;; so I will not have to duplicate the work later, in case I ever decide
;;; to implement the strategies hinted at below.
#|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Pieces of code for implementing a computed hint to rewrite equalities
;;; between boolean expressions to iff, e.g.,
;;; (equal (pred-1 ... ...)
;;; (pred-2 ...))
;;; ==>
;;; (iff (pred-1 ... ...)
;;; (pred-2 ...))
(defun boolean-fn-p (fn ens wrld)
(declare (xargs :mode :program))
(ts-booleanp (fcons-term fn (formals fn wrld)) ens wrld))
(defun equality-between-booleans-present-in-term (term ens wrld)
(declare (xargs :mode :program))
(and (equal (fn-symb term) 'EQUAL)
(boolean-fn-p (car (cadr term)) ens wrld)
(boolean-fn-p (car (caddr term)) ens wrld)))
(defun equality-between-booleans-present-in-goal-1 (goal ens wrld)
(declare (xargs :mode :program))
(if (endp goal)
nil
(or (equality-between-booleans-present-in-term (car goal) ens wrld)
(equality-between-booleans-present-in-goal-1 (cdr goal) ens wrld))))
(defun equality-between-booleans-present-in-goal (goal pspv wrld)
(declare (xargs :mode :program))
(equality-between-booleans-present-in-goal-1 goal
(access rewrite-constant
(access prove-spec-var
pspv
:rewrite-constant)
:current-enabled-structure)
wrld))
|#
;; Put it up to eleven
|