1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; integerp-helper.lisp
;;;
;;;
;;; This book contains some messy proofs which I want to hide.
;;; There is probably nothing to be gained by looking at it.
;;;
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
(local
(include-book "../../support/top"))
(include-book "building-blocks")
(include-book "default-hint")
(set-default-hints '((nonlinearp-default-hint stable-under-simplificationp
hist pspv)))
(table acl2-defaults-table :state-ok t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(encapsulate
()
(local
(defun INDUCT-NAT (x)
(if (and (integerp x)
(> x 0))
(induct-nat (1- x))
())))
(local
(defthm x-or-x/2-4
(implies (and (integerp x) (>= x 0))
(or (integerp (/ x 2)) (integerp (/ (1+ x) 2))))
:rule-classes ()
:hints (("Goal" :induct (induct-nat x))
("Subgoal *1/1''" :use (:instance (:theorem
(implies (integerp a)
(integerp (+ 1 a))))
(a (+ -1/2 (* 1/2 X))))))))
(local
(defthm x-or-x/2-5
(IMPLIES (integerp x)
(integerp (- x)))
:rule-classes ()))
(local
(defthm foo
(implies (and (integerp x)
(integerp y))
(integerp (+ x y)))
:rule-classes ()))
(local
(defthm bar
(equal (+ X (- (* 1/2 X)))
(* 1/2 x))))
(local
(defthm x-or-x/2-11
(implies (and (integerp x) (<= x 0))
(or (integerp (/ x 2)) (integerp (/ (1+ x) 2))))
:rule-classes ()
:hints (("Goal" :in-theory (disable FUNCTIONAL-SELF-INVERSION-OF-MINUS)
:use ((:instance x-or-x/2-4 (x (- x)))
(:instance foo (x (+ 1/2 (- (* 1/2 X)))) (y x)))))))
(local
(defthm X-OR-X/2
(implies (integerp x)
(or (integerp (/ x 2)) (integerp (/ (1+ x) 2))))
:rule-classes ()
:hints (("Goal" :in-theory (disable FUNCTIONAL-SELF-INVERSION-OF-MINUS)
:use ((:instance x-or-x/2-4)
(:instance x-or-x/2-11))))))
;;; Expressions like (integerp (+ 1/2 x)) show up when one is reasoning
;;; about odd and even.
;;; Note1: We do not have to worry about expressions such as
;;; (integerp (+ -1/2 x)) or (integerp (+ 3/2 x)) because of
;;; integerp-+-reduce-leading-constant.
;;; Note 2: We could write a similar rule --- probably a meta rule
;;; --- for expressions such as (integerp (+ 1/3 x)) and
;;; (integerp (+ 3/10 x)). For (integerp (+ c/d x)), (* n x) is not
;;; an integer for all 0 < n < d. But this would probably be a messy
;;; proof to do --- it would depend on c/d being in lowest terms ---
;;; but I have not thought about it yet.
(defthm even-and-odd-alternate
(implies (acl2-numberp x)
(equal (integerp (+ 1/2 x))
(and (integerp (* 2 x))
(not (integerp x)))))
:hints (("Subgoal 3'"
:use ((:instance
(:theorem (implies (and (integerp x)
(integerp y))
(integerp (* x y))))
(x (+ 1/2 x))
(y 2))))
("Subgoal 2'"
:use ((:instance X-OR-X/2
(x (* 2 x)))))))
(local
(defun ind (x)
(cond ((not (integerp x))
t)
((< x -1)
(ind (+ 2 x)))
((< 1 x)
(ind (+ -2 x)))
((equal x -1)
t)
((equal x 0)
t)
((equal x 1)
t)
(t
t))))
(local
(defthm reduce-integerp
(implies (and (integerp x)
(acl2-numberp y))
(iff (integerp (+ x y))
(integerp y)))))
(defthm sum-is-even-helper
(implies (and (integerp x)
(integerp y))
(equal (integerp (+ (* 1/2 x) (* 1/2 y)))
(if (integerp (* 1/2 x))
(integerp (* 1/2 y))
(not (integerp (* 1/2 y))))))
:hints (("Goal" :induct (ind x))
("Subgoal *1/3.1" :use (:instance X-OR-X/2
(x y))
:in-theory (disable even-and-odd-alternate))))
)
|