File: natp-posp.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (186 lines) | stat: -rw-r--r-- 4,860 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; natp-posp.lisp
;;;
;;; This book is a modified copy of that in arithmetic/natp-posp.  I
;;; discourage the use of natp and posp, except as abbreviations in
;;; a functions definition.  I have no good examples to justify this,
;;; however, so use your own judgement.
;;;
;;; I include this book for those who want to use natp and posp.
;;; Use (enable-natp-posp-theory) and (disable-natp-posp-theory)
;;; to toggle the rules in this book.  See top.lisp for their
;;; definition.
;;;
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package "ACL2")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(include-book "building-blocks")

(local
 (include-book "../../support/top"))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; A few simple forward-chaining and rewrite rules to allow
;;; basic reasoning about natp and posp.

(defthm natp-fc-1
  (implies (natp x)
	   (<= 0 x))
  :rule-classes :forward-chaining)

(defthm natp-fc-2
  (implies (natp x)
	   (integerp x))
  :rule-classes :forward-chaining)

(defthm posp-fc-1
  (implies (posp x)
	   (< 0 x))
  :rule-classes :forward-chaining)

(defthm posp-fc-2
  (implies (posp x)
	   (integerp x))
  :rule-classes :forward-chaining)

(defthm natp-rw
  (implies (and (integerp x)
		(<= 0 x))
	   (natp x)))

(defthm posp-rw
  (implies (and (integerp x)
		(< 0 x))
	   (posp x)))

(defthm natp-posp
 (implies (and (natp a)
	       (not (equal a 0)))
	  (posp a)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; We include a few simple rules for reducing natp or
;;; posp expressions to simpler ones.

;;; We generalize |(natp a)  <=>  (posp a+1)| and natp-posp--1

(defthm |(posp (+ c x))|
  (implies (and (syntaxp (quotep c))
		(< 0 c)
		(integerp a))
	   (equal (posp (+ c a))
		  (natp (+ (- c 1) a)))))

(defthm |(natp (+ c x))|
  (implies (and (syntaxp (quotep c))
		(< c 0)
		(integerp a))
	   (equal (natp (+ c x))
		  (posp (+ (+ c 1) x)))))

;;; We break natp-* into two rules.  One which induces a case-split
;;; similar to that for |(< 0 (* x y))| to be used while rewriting a
;;; goal literal, the other duplicates natp-* and is used during
;;; back-chaining.

(defthm |(natp (* x y))|
  (implies (and (syntaxp (rewriting-goal-literal x mfc state))
		(integerp x)
		(integerp y))
	   (equal (natp (* x y))
		  (or (and (natp x)
			   (natp y))
		      (and (natp (- x))
			   (natp (- y)))))))

(defthm |(natp (* x y)) backchaining|
  (implies (and (syntaxp (not (rewriting-goal-literal x mfc state)))
		(natp x)
		(natp y))
	   (natp (* x y))))

;;; We do the same for posp.  This was missing from
;;; arithmetic/natp-posp.lisp.

(defthm |(posp (* x y))|
  (implies (and (syntaxp (rewriting-goal-literal x mfc state))
		(integerp x)
		(integerp y))
	   (equal (posp (* x y))
		  (or (and (posp x)
			   (posp y))
		      (and (posp (- x))
			   (posp (- y)))))))

(defthm |(posp (* x y)) backchaining|
  (implies (and (syntaxp (not (rewriting-goal-literal x mfc state)))
		(posp x)
		(posp y))
	   (posp (* x y))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; A couple of simple type-prescription rules for natp and posp
;;; of differences.

(defthm |x < y  =>  0 < -x+y|
  (implies (and (integerp x) (integerp y) (< x y))
	   (posp (+ (- x) y)))
  :rule-classes ((:type-prescription)))

(defthm |x < y  =>  0 < y-x|
  (implies (and (integerp x) (integerp y) (< x y))
	   (posp (+ y (- x))))
  :rule-classes ((:type-prescription)))

;;; We do the same for posp.  This was missing from
;;; arithmetic/natp-posp.lisp.

(defthm |x < y  =>  0 <= -x+y|
  (implies (and (integerp x) (integerp y) (<= x y))
	   (natp (+ (- x) y)))
  :rule-classes ((:type-prescription)))

(defthm |x < y  =>  0 <= y-x|
  (implies (and (integerp x) (integerp y) (<= x y))
	   (natp (+ y (- x))))
  :rule-classes ((:type-prescription)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; We do not include the following:

#|
(defthm posp-natp
  (implies (posp (+ -1 x))
	   (natp (+ -2 x))))
|#

;;; It is claimed that it was needed for a couple of proofs,
;;; but we did not find this to be the case in ACL2 v-3.0.1.  The hint
#|
	  ("Subgoal *1/3.3" :use (:instance map-lemma-3.7
					    (i 0)
					    (j (CAR V))))
|#
;;; did, however, have to be added to map-lemma-4 in
;;; books/workshops/2003/sustik/support/dickson,lisp
;;; (This test was done with the arithmetic/natp-posp book,
;;; not this one which contains a generalization of the above:
;;; |(posp (+ c x))|

(in-theory (disable natp posp))