1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
|
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; normalize.lisp
;;;
;;; There are two classes of rules in this book:
;;;
;;; 1. Specialized:
;;; normalize-terms-such-as-a/a+b-+-b/a+b
;;; normalize-terms-such-as-1/ax+bx
;;; These are a couple of fairly messy bind-free rules.
;;;
;;; normalize-terms-such-as-a/a+b-+-b/a+b
;;;
;;; assuming a and b are acl2-numberp
;;; (+ (* a (/ (+ a b))) (* b (/ (+ a b)))) ==> (if (equal (+ a b) 0) 0 1)
;;; (+ (* a (/ (+ a b))) c (* b (/ (+ a b)))) ==> (if (equal (+ a b) 0) c (+ c 1))
;;;
;;; We are, in affect, undoing distributivity in certain cases.
;;;
;;; normalize-terms-such-as-1/ax+bx
;;;
;;; assuming a, b, and x are acl2-numberp
;;; (/ (+ x (* b x))) ==> (* (/ x) (/ (+ 1 b)))
;;; (/ (+ (* a x) (* b x))) ==> (* (/ (+ a b)) (/ x))
;;;
;;; We are, in affect, undoing distributivity when the term is under
;;; a division.
;;;
;;; 2. Normal:
;;; Concerned with finding ``like'' pieces of sums or products
;;; and combining the found pieces in order to normalize the
;;; sum or product.
;;;
;;; See common.lisp for a short description of the general strategy
;;; used in these rules.
;;;
;;; We assume in the examples below, that everything is know to be an
;;; acl2-number.
;;;
;;; A simple examples of gathering like terms:
;;; (+ a b (* 3 a)) ===> (+ b (* 4 a))
;;;
;;; For normalizing products there are two distinct behaviours.
;;;
;;; Under the default theory, gather-exponents, exponents
;;; consisting of sums are gathered together, e.g.,
;;; (* (expt x m) (expt x n)) ===> (expt x (+ m n)).
;;; (* a b (expt a n)) ===> (* b (expt a (+ n 1)))
;;;
;;; Under the other theory, scatter-exponents, exponents
;;; consisting of sums are broken apart or scattered, e.g.,
;;; (expt x (+ m n)) ===> (* (expt x m) (expt x n)).
;;; (* a b (expt a n)) no change
;;;
;;; Under both theories:
;;; (* a b b) ===> (* a (expt b 2))
;;; (* b (expt a (* 2 n)) (expt a n)) ===> (* b (expt a (* 3 n)))
;;;
;;; These two theories are defined in top, using rules from this
;;; book and elsewhere.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(include-book "common")
(local
(include-book "basic"))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(local
(in-theory (enable collect-+)))
(local
(in-theory (enable collect-*)))
(set-state-ok t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; normalize-terms-such-as-a/a+b-+-b/a+b
#|
;;; I can now do the first two, but not the third or fourth. Is
;;; there no end to this madness?
(thm
(IMPLIES (AND (NOT (EQUAL N 0))
(INTEGERP N)
(<= 0 N))
(EQUAL 1 (+ (/ (+ 1 N)) (* N (/ (+ 1 N)))))))
(thm
(IMPLIES (AND (NOT (EQUAL N 0))
(INTEGERP N)
(<= 0 N)
(acl2-numberp c))
(EQUAL c (+ (* 2 c (/ (+ 2 N))) (* c N (/ (+ 2 N)))))))
(thm
(IMPLIES (AND (NOT (EQUAL N 0))
(INTEGERP N)
(<= 0 N)
(acl2-numberp c))
(EQUAL 2 (+ (* 4 (/ (+ 2 N))) (* 2 N (/ (+ 2 N)))))))
(thm
(IMPLIES (AND (INTEGERP N) (< 0 N))
(EQUAL (+ (/ (+ 1 N)) (/ (+ N (EXPT N 2))))
(/ N))))
|#
;;; assuming a and b are acl2-numberp
;;; (+ (* a (/ (+ a b))) (* b (/ (+ a b)))) ==> (if (equal (+ a b) 0) 0 1)
;;; (+ (* a (/ (+ a b))) c (* b (/ (+ a b)))) ==> (if (equal (+ a b) 0) c (+ c 1))
;;; We are, in affect, undoing distributivity in certain cases.
(defun factors-other-than-denominator (addend denominator)
(declare (xargs :guard t))
;; Addend is, at least initially, a product. We return a list of
;; all of addend's factors except denominator.
(cond ((and (true-listp addend)
(eq (ffn-symb addend) 'BINARY-*))
(if (and (and (true-listp (arg1 addend))
(eq (ffn-symb (arg1 addend)) 'UNARY-/))
(equal (arg1 (arg1 addend)) denominator))
(factors (arg2 addend))
(cons (arg1 addend)
(factors-other-than-denominator (arg2 addend) denominator))))
((and (true-listp addend)
(eq (ffn-symb addend) 'UNARY-/)
(equal (arg1 addend) denominator))
nil)
(t
(list addend))))
(defun number-of-addends (sum)
(declare (xargs :guard t))
(if (and (true-listp sum)
(eq (fn-symb sum) 'BINARY-+))
(+ 1 (number-of-addends (fargn sum 2)))
1))
(defun find-denominators-with-sums (addend denominator-list
number-of-addends-in-sum)
(declare (xargs :guard (integerp number-of-addends-in-sum)))
;; To a first approximation, we return a list of all those factors
;; of addend which are of the form (/ (+ ..)). In reality, we
;; return a list of the (+ ...)s. Number-of-addends-in-sum is an
;; optimization. Since this function is in support of
;; normalize-terms-such-as-a/a+b-+-b/a+b, we don't bother to return
;; those numerators which are ``too long.'' Consider the term
;; (+ (* a (/ (+ a b c)) (/ (+ a b))) (* b (/ (+ a b c)) (/ (+ a b)))).
;; When this function is called, number-of-addends-in-sum will be 2,
;; and we return ((+ a b)). We do not include (+ a b c) because
;; it contains three addends in the sum, and we would not be able
;; to find instances of all three among the two addends of the
;; original term.
(cond ((or (variablep addend)
(fquotep addend))
denominator-list)
((and (true-listp addend)
(eq (ffn-symb addend) 'BINARY-*))
(if (and (true-listp (arg1 addend))
(eq (fn-symb (arg1 addend)) 'UNARY-/)
(true-listp (arg1 (arg1 addend)))
(eq (fn-symb (arg1 (arg1 addend))) 'BINARY-+)
(<= (number-of-addends (arg1 (arg1 addend)))
number-of-addends-in-sum))
(find-denominators-with-sums (arg2 addend)
(cons (arg1 (arg1 addend))
denominator-list)
number-of-addends-in-sum)
(find-denominators-with-sums (arg2 addend)
denominator-list
number-of-addends-in-sum)))
((and (true-listp addend)
(eq (fn-symb addend) 'UNARY-/)
(true-listp (arg1 addend))
(eq (fn-symb (arg1 addend)) 'BINARY-+)
(<= (number-of-addends (arg1 addend))
number-of-addends-in-sum))
(cons (arg1 addend) denominator-list))
(t
denominator-list)))
(local
(defthm find-denominators-with-sums-thm
(implies (true-list-listp denominator-list)
(true-list-listp (find-denominators-with-sums addend denominator-list n)))))
(defun remainder-aaa (sum factors to-be-found remainder)
;; Modified by Jared 2015-04-30 to add true-listp guard, due to
;; set-equal changes.
(declare (xargs :guard (true-listp factors)))
;; Consider that the term
;; (+ (* a x (/ (+ a b))) (* b x (/ (+ a b))) c),
;; where c is really some big hairy term, has been seen by
;; normalize-terms-such-as-a/a+b-+-b/a+b. When we get here, sum is
;; (+ (* b x (/ (+ a b))) c), factors is ((/ (+ a b)) x),
;; to-be-found is (b), and remainder is nil. In this example, we
;; compare (b (/ (+ a b)) x) --- from to-be-found and factors ---
;; with (b (/ (+ a b)) x) --- the factors in the first addend of
;; sum. Since they match we step both. If they didn't we would
;; step only sum and accumulate the addend onto remainder. The next
;; iteration we are done, and return c. Note that, just as for
;; normalize-terms-such-as-a/a+b-+-b/a+b-fn-2, we are relying on the
;; sorting of things into term-order.
(cond ((atom to-be-found)
(cond ((and remainder sum)
(list 'BINARY-+ remainder sum))
(remainder
remainder)
(sum
sum)
(t
''0)))
((null sum)
nil)
((and (true-listp sum)
(eq (fn-symb sum) 'BINARY-+))
(if (set-equal (factors (arg1 sum))
(cons (car to-be-found) factors))
(remainder-aaa (arg2 sum)
factors
(cdr to-be-found)
remainder)
(remainder-aaa (arg2 sum)
factors
to-be-found
(if (null remainder)
(arg1 sum)
(list 'BINARY-+ (arg1 sum) remainder)))))
((null (cdr to-be-found))
(if (set-equal (factors sum)
(cons (car to-be-found) factors))
(if remainder
remainder
''0)
nil))
(t
nil)))
(defun normalize-terms-such-as-a/a+b-+-b/a+b-fn-2 (denominator addend rest)
(declare (xargs :guard (true-listp denominator)))
;; Denominator is a denominator as found by
;; find-denominators-with-sums. Addend and sum are the x and y of
;; normalize-terms-such-as-a/a+b-+-b/a+b respectively. Consider the
;; that the term (+ (* a x (/ (+ a b))) (* b x (/ (+ a b))) c),
;; where c is really some big hairy term, has been seen by
;; normalize-terms-such-as-a/a+b-+-b/a+b. Upon entry, denominator
;; will be (+ a b), addend will be (* a x (/ (+ a b))), and rest
;; will be (+ (* b x (/ (+ a b))) c).
;; Before proceeding, we make one important observation. Due to the
;; fact that ACL2 sorts the addends of both denominator and the
;; original term into term-order, the addends of denominator and the
;; addends of the original term are lined up with eachother in the
;; sense that the a and the b appear in the same order in both.
;; This allows us to carry out our search in a much more efficient
;; manner, marching down both denominator and addend + sum in
;; lock-step.
;; We now return to our discussion of this function. Factors1 and
;; factors2 will be bound to (* a x) and a respectively. Factors
;; will then be bound to (x). X is the ``extra'' piece left over
;; after removing a from the numerator of addend. We now want to
;; find a similar match for b in rest. This is done by
;; remainder-aaa, which returns c as the remainder.
;; See normalize-terms-such-as-a/a+b-+-b/a+b for a discussion of why
;; we return the binding we do.
;; The first branch of the cond below is a special case for things
;; like:
#|
(thm
(IMPLIES (AND (NOT (EQUAL N 0))
(INTEGERP N)
(<= 0 N))
(EQUAL 1 (+ (/ (+ 1 N)) (* N (/ (+ 1 N)))))))
(thm
(IMPLIES (AND (NOT (EQUAL N 0))
(INTEGERP N)
(<= 0 N)
(acl2-numberp c))
(EQUAL c (+ (* c (/ (+ 1 N))) (* c N (/ (+ 1 N)))))))
|#
(let ((factors1 (factors-other-than-denominator addend denominator))
(factors2 (factors (arg1 denominator))))
(cond ((equal factors2 '('1))
(let* ((factors factors1)
(remainder (remainder-aaa rest
(cons (list 'UNARY-/ denominator) factors)
(addends (arg2 denominator))
nil)))
(if remainder
(list (cons 'factor (make-product factors))
(cons 'denominator denominator)
(cons 'remainder remainder)
(cons 'a (fargn denominator 1)))
nil)))
((intersectp-equal factors1 factors2)
(let* ((factors (set-difference-equal factors1 factors2))
(remainder (remainder-aaa rest
(cons (list 'UNARY-/ denominator) factors)
(addends (arg2 denominator))
nil)))
(if remainder
(list (cons 'factor (make-product factors))
(cons 'denominator denominator)
(cons 'remainder remainder)
(cons 'a (fargn denominator 1)))
nil)))
(t
nil))))
(defun normalize-terms-such-as-a/a+b-+-b/a+b-fn-1 (denominator-list addend rest)
(declare (xargs :guard (and (true-list-listp denominator-list))))
(if (endp denominator-list)
nil
(let ((binding-alist
(normalize-terms-such-as-a/a+b-+-b/a+b-fn-2 (car denominator-list)
addend rest)))
(if binding-alist
binding-alist
(normalize-terms-such-as-a/a+b-+-b/a+b-fn-1 (cdr denominator-list)
addend rest)))))
;;; We do not catch things such as
;;; (+ (* a x (/ (+ a (* b x)))) (* b (expt x 2) (/ (+ a (* b x)))))
;;; even though this is the same as
;;; (* x (+ (* a (/ (+ a (* b x)))) (* b x (/ (+ a (* b x))))))
;;; Writing the bind-free function which would find such (probably rare)
;;; patterns as this would be more work than I am willing to do right now.
;;; I leave this note in case I feel up to it later, or perhaps you are
;;; looking for a challange and would be willing to undertake the task
;;; and submit the result to the ACL2 maintainers.
;;; In the example:
;;;(thm
;;; (implies (and (acl2-numberp a)
;;; (acl2-numberp b))
;;; (equal (+ (* a (/ (+ a b))) (* b (/ (+ a b))))
;;; y))
;;; :otf-flg t)
;;; normalize-terms-such-as-a/a+b-+-b/a+b-fn returns
;;;((FACTOR QUOTE 1)
;;; (DENOMINATOR BINARY-+ A B)
;;; (REMAINDER QUOTE 0)
;;; (A . A))
;;; Disable the associative and commutative rules for addition.
;;; In the example:
;;; (thm
;;; (implies (and (acl2-numberp a)
;;; (acl2-numberp b)
;;; (acl2-numberp c)
;;; (acl2-numberp x))
;;; (equal (+ (* x a (/ (+ a b))) c (* x b (/ (+ a b))))
;;; y))
;;; :otf-flg t)
;;; normalize-terms-such-as-a/a+b-+-b/a+b-fn returns
;;;((FACTOR . X)
;;; (DENOMINATOR BINARY-+ A B)
;;; (REMAINDER . C)
;;; (A . A))
;;; Disable the associative and commutative rules for addition.
;;; In the example:
;;; (thm
;;; (implies (and (acl2-numberp a)
;;; (acl2-numberp b)
;;; (acl2-numberp c)
;;; (acl2-numberp x))
;;; (equal (+ (* x a (/ (+ a b c)))
;;; (* x b (/ (+ a b c)))
;;; (* x c (/ (+ a b c))))
;;; y))
;;; :otf-flg t)
;;; normalize-terms-such-as-a/a+b-+-b/a+b-fn returns
;;;((FACTOR . X)
;;; (DENOMINATOR BINARY-+ A B)
;;; (REMAINDER . C)
;;; (A . A))
(defun normalize-terms-such-as-a/a+b-+-b/a+b-fn (x y)
(declare (xargs :guard t))
(normalize-terms-such-as-a/a+b-+-b/a+b-fn-1
(find-denominators-with-sums x
nil
(+ 1 (number-of-addends y)))
x
y))
;;; I use distribute-* in the fifth hypothesis of
;;; normalize-terms-such-as-a/a+b-+-b/a+b:
;;; (equal y
;;; (+ (* factor (distribute-* (+ denominator (- a))
;;; (/ denominator)))
;;; remainder)))
;;; in order ot ensure that the two subterms denominator and
;;; (/ denominator) do not cancel each other off, causing the
;;; hypothesis to not be relieved. The rule
;;; distribute-*-distributes-2 ensures that distribution occurs
;;; as expected, and the rule distribute-*-distributes-1 replaces
;;; distribute-* with * after this occurs. I thereby prevent the
;;; rule |(* a (/ a))| in basic.lisp from gettingin the way.
(defun distribute-* (x y)
(declare (xargs :guard (and (acl2-numberp x)
(acl2-numberp y))))
(* x y))
(defthm distribute-*-distributes-1
(equal (distribute-* x y)
(* x y)))
(defthm distribute-*-distributes-2
(equal (distribute-* (+ x y) z)
(+ (* x z) (distribute-* y z))))
(in-theory (disable distribute-*))
;;; assuming a, b, and c are acl2-numberp
;;; (+ (* a (/ (+ a b))) c (* b (/ (+ a b)))) ==> (if (equal (+ a b) 0) c (+ c 1))
(encapsulate
()
(local
(include-book "../../support/top"))
;; We compare the equalities with x and y seperately in order to
;; avoid looping. The seemingly ``extra'' variable a allows us to do
;; this.
(defthm normalize-terms-such-as-a/a+b-+-b/a+b
(implies (and (bind-free
(normalize-terms-such-as-a/a+b-+-b/a+b-fn x y)
(factor denominator remainder a))
(acl2-numberp remainder)
(acl2-numberp denominator)
(equal x (* factor a (/ denominator)))
(equal y
(+ (* factor (distribute-* (+ denominator (- a))
(/ denominator)))
remainder)))
(equal (+ x y)
(if (equal denominator 0)
remainder
(+ factor remainder)))))
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; normalize-terms-such-as-1/ax+bx
;;; assuming a, b, and x are acl2-numberp
;;; (/ (+ x (* b x))) ==> (* (/ x) (/ (+ 1 b)))
;;; (/ (+ (* a x) (* b x))) ==> (* (/ (+ a b)) (/ x))
;;; We are, in affect, undoing distributivity when the term is under
;;; a division.
;;; In the example
;;; (thm
;;; (implies (and (acl2-numberp a)
;;; (acl2-numberp b)
;;; (acl2-numberp x))
;;; (equal (/ (+ (* a x) (* b x)))
;;; y))
;;; :otf-flg t)
;;; normalize-terms-such-as-1/ax+bx-fn returns
;;; ((COMMON . X)
;;; (REMAINDER BINARY-+ A B))
(defun normalize-terms-such-as-1/ax+bx-fn (sum)
(declare (xargs :guard t))
;; We look for any factors common to each addend of sum. If we
;; find any, we return a binding list with common bound to the
;; product of these factors, and remainder bound to the original
;; sum but with the common factors removed from each addend.
(if (and (true-listp sum)
(eq (ffn-symb sum) 'BINARY-+))
(let ((common-factors (common-factors (factors (arg1 sum))
(arg2 sum))))
(if common-factors
(let ((common (make-product common-factors))
(remainder (remainder common-factors sum)))
(list (cons 'common common)
(cons 'remainder remainder)))
nil))
nil))
;;; assuming a, b, and x are acl2-numberp
;;; (/ (+ x (* b x))) ==> (* (/ x) (/ (+ 1 b)))
;;; (/ (+ (* a x) (* b x))) ==> (* (/ (+ a b)) (/ x))
(defthm normalize-terms-such-as-1/ax+bx
(implies (and (bind-free
(normalize-terms-such-as-1/ax+bx-fn sum)
(common remainder))
(equal sum
(* common remainder)))
(equal (/ sum)
(* (/ common) (/ remainder)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Normalize sums
(local
(in-theory (disable matching-addend-p)))
(defun find-matching-addend (to-match x mfc state)
(declare (xargs :guard t))
(cond ((and (true-listp x)
(eq (fn-symb x) 'BINARY-+))
(cond ((and (matching-addend-p to-match (arg1 x))
;; prevent various odd loops
(stable-under-rewriting-sums (arg1 x) mfc state))
(list (cons 'match (arg1 x))))
((eq (fn-symb (arg2 x)) 'BINARY-+)
(find-matching-addend to-match (arg2 x)
mfc state))
((and (matching-addend-p to-match (arg2 x))
(stable-under-rewriting-sums (arg2 x) mfc state))
(list (cons 'match (arg2 x))))
(t
nil)))
((and (matching-addend-p to-match x)
(stable-under-rewriting-sums x mfc state))
(list (cons 'match x)))
(t
nil)))
;;; Note that since we rewrite from the inside out, we only have to
;;; check whether x matches some addend of y.
(defthm normalize-addends
(implies (and (syntaxp (in-term-order-+ y mfc state))
(bind-free
(find-matching-addend (addend-pattern x) y
mfc state)
(match)))
(equal (+ x y)
(+ (bubble-down x match) y))))
(theory-invariant
(if (active-runep '(:definition arith-5-active-flag))
(or (not (active-runep '(:rewrite normalize-addends)))
(and (active-runep '(:rewrite bubble-down-+-bubble-down))
(active-runep '(:rewrite bubble-down-+-match-1))
(active-runep '(:rewrite bubble-down-+-match-2))
(not (active-runep '(:rewrite bubble-down)))
(not (active-runep '(:executable-counterpart bubble-down)))))
t)
:error nil)
(local
(in-theory (disable normalize-addends)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Normalize products, gathering exponents
(local
(in-theory (disable matching-factor-gather-exponents-p)))
(defun find-matching-factor-gather-exponents (to-match x mfc state)
(declare (xargs :guard t))
(cond ((eq (fn-symb x) 'BINARY-*)
(cond ((and (matching-factor-gather-exponents-p to-match (arg1 x))
;; prevent various odd loops
(stable-under-rewriting-products (arg1 x) mfc state))
(list (cons 'match (arg1 x))))
((eq (fn-symb (arg2 x)) 'BINARY-*)
(find-matching-factor-gather-exponents to-match (arg2 x)
mfc state))
((and (matching-factor-gather-exponents-p to-match (arg2 x))
(stable-under-rewriting-products (arg2 x) mfc state))
(list (cons 'match (arg2 x))))
(t
nil)))
((and (matching-factor-gather-exponents-p to-match x)
(stable-under-rewriting-products x mfc state))
(list (cons 'match x)))
(t
nil)))
(defthm normalize-factors-gather-exponents
(implies (and (syntaxp (in-term-order-* y mfc state))
(bind-free
(find-matching-factor-gather-exponents
(factor-pattern-gather-exponents x) y mfc state)
(match)))
(equal (* x y)
(* (bubble-down x match) y))))
(theory-invariant
(if (active-runep '(:definition arith-5-active-flag))
(or (not (active-runep '(:rewrite normalize-factors-gather-exponents)))
(and (active-runep '(:rewrite bubble-down-*-bubble-down))
(active-runep '(:rewrite bubble-down-*-match-1))
(active-runep '(:rewrite bubble-down-*-match-2))
(not (active-runep '(:rewrite bubble-down)))
(not (active-runep '(:executable-counterpart bubble-down)))))
t)
:error nil)
(local
(in-theory (disable normalize-factors-gather-exponents)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Normalize products, scattering exponents
(local
(in-theory (disable matching-factor-scatter-exponents-p)))
(defun find-matching-factor-scatter-exponents (to-match x mfc state)
(declare (xargs :guard t))
(cond ((eq (fn-symb x) 'BINARY-*)
(cond ((and (matching-factor-scatter-exponents-p to-match (arg1 x))
;; Prevent various odd loops.
(stable-under-rewriting-sums (arg1 x) mfc state))
(list (cons 'match (arg1 x))))
((eq (fn-symb (arg2 x)) 'BINARY-*)
(find-matching-factor-scatter-exponents to-match (arg2 x)
mfc state))
((and (matching-factor-scatter-exponents-p to-match (arg2 x))
(stable-under-rewriting-sums (arg2 x) mfc state))
(list (cons 'match (arg2 x))))
(t
nil)))
((and (matching-factor-scatter-exponents-p to-match x)
(stable-under-rewriting-sums x mfc state))
(list (cons 'match x)))
(t
nil)))
(defthm normalize-factors-scatter-exponents
(implies (and (syntaxp (in-term-order-* y mfc state))
(bind-free
(find-matching-factor-scatter-exponents
(factor-pattern-scatter-exponents x) y mfc state)
(match)))
(equal (* x y)
(* (bubble-down x match) y))))
(theory-invariant
(if (active-runep '(:definition arith-5-active-flag))
(or (not (active-runep '(:rewrite normalize-scatter-exponents)))
(and (active-runep '(:rewrite bubble-down-*-bubble-down))
(active-runep '(:rewrite bubble-down-*-match-1))
(active-runep '(:rewrite bubble-down-*-match-2))
(not (active-runep '(:rewrite bubble-down)))
(not (active-runep '(:executable-counterpart bubble-down)))))
t)
:error nil)
(local
(in-theory (disable normalize-factors-scatter-exponents)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(theory-invariant
(if (active-runep '(:definition arith-5-active-flag))
(not (and (active-runep '(:rewrite normalize-factors-gather-exponents))
(active-runep '(:rewrite normalize-factors-scatter-exponents))))
t)
:error nil)
|