File: numerator-and-denominator.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (232 lines) | stat: -rw-r--r-- 6,040 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; numerator-and-denominator.lisp
;;;
;;; Some simple facts about numerator and denominator.
;;;
;;; Some of the theorems in this book could be generalized, perhaps by
;;; using bind-free.  Other useful theorems could probably be added.
;;; However, I choose to leave this book as it is.  This book is
;;; sufficient for what I need, and I do not have enough experience to
;;; know what else might be needed.
;;;
;;; If you are reasoning about numerator or denominator, you are
;;; probably going about it the wrong way.  If you truly need to
;;; reason about numerator and denominator and discover some useful
;;; theorems to add, please send them to the ACL2 maintainers.  They
;;; could be added to this book.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package "ACL2")

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(local
 (include-book "../../support/top"))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Type-set already knows that (numerator x) and (denominator x)
;;; are integers, and that 0 < (denominator x).

(defthm Rational-implies2               ; Redundant, from axioms.lisp
  (implies (rationalp x)
           (equal (* (/ (denominator x)) (numerator x)) x)))

(local
 (in-theory (enable rewrite-linear-equalities-to-iff)))

(defthm numerator-zero
  (implies (rationalp x)
           (equal (equal (numerator x) 0)
                  (equal x 0)))
  :rule-classes ((:rewrite)
		 (:type-prescription
		  :corollary
		  (implies (equal x 0)
			   (equal (numerator x) 0)))))

(defthm numerator-positive
  (implies (rationalp x)
	   (equal (< 0 (numerator x))
		  (< 0 x)))
  :rule-classes ((:rewrite)
		 (:type-prescription
		  :corollary
		  (implies (and (rationalp x)
				(< 0 x))
			   (and (integerp (numerator x))
				(< 0 (numerator x)))))
		 (:type-prescription
		  :corollary
		  (implies (and (rationalp x)
				(<= 0 x))
			   (and (integerp (numerator x))
				(<= 0 (numerator x)))))))

(defthm numerator-negative
  (implies (rationalp x)
	   (equal (< (numerator x) 0)
		  (< x 0)))
  :rule-classes ((:rewrite)
		 (:type-prescription
		  :corollary
		  (implies (and (rationalp x)
				(< x 0))
			   (and (integerp (numerator x))
				(< (numerator x) 0))))
		 (:type-prescription
		  :corollary
		  (implies (and (rationalp x)
				(<= x 0))
			   (and (integerp (numerator x))
				(<= (numerator x) 0))))))

(defthm numerator-minus
   (equal (numerator (- i))
          (- (numerator i))))

(defthm denominator-minus
  (implies (rationalp x)
           (equal (denominator (- x))
                  (denominator x))))

(defthm integerp==>numerator-=-x
  (implies (integerp x)
	   (equal (numerator x)
		  x)))

(defthm integerp==>denominator-=-1
  (implies (integerp x)
           (equal (denominator x)
		  1)))

(defthm equal-denominator-1
  (equal (equal (denominator x) 1)
         (or (integerp x)
             (not (rationalp x)))))

(defthm |(* r (denominator r))|
  (implies (rationalp r)
	   (equal (* r (denominator r))
		  (numerator r))))

;;; From arithmetic/equalities.lisp

;;; This next rule is too general.  I disable it right away.
;;; I do, however, include a couple of rules similar to this
;;; below.

(defthm /r-when-abs-numerator=1
  (and
   (implies
    (equal (numerator r) 1)
    (equal (/ r)
	   (denominator r)))
   (implies
    (equal (numerator r) -1)
    (equal (/ r)
	   (- (denominator r)))))
  :hints (("Goal" :use ((:instance rational-implies2 (x r)))
           :in-theory (disable rational-implies2))))

(in-theory (disable /r-when-abs-numerator=1))

(defthm |(equal (/ r) (denominator r))|
  (implies (rationalp r)
	   (equal (equal (/ r) (denominator r))
		  (equal (numerator r) 1))))

(defthm |(equal (/ r) (- (denominator r)))|
  (implies (rationalp r)
	   (equal (equal (/ r) (- (denominator r)))
		  (equal (numerator r) -1))))

;;; From arithmetic/rationals.lisp

; We name this Numerator-goes-down-by-integer-division-linear rather than
; Numerator-goes-down-by-integer-division to avoid a conflict with system books
; arithmetic/rationals.lisp.
(defthm
  Numerator-goes-down-by-integer-division-linear
  (implies (and (integerp x)
		(< 0 x)
		(rationalp r))
	   (<= (abs (numerator (* (/ x) r)))
	       (abs (numerator r))))
  :hints (("Goal" :use numerator-goes-down-by-integer-division-pass1))
  :rule-classes ((:linear
		  :corollary
		  (implies (and (integerp x)
				(< 0 x)
				(rationalp r)
				(<= 0 r))
			   (<= (numerator (* (/ x) r))
			       (numerator r))))
		 (:linear
		  :corollary
		  (implies (and (integerp x)
				(< 0 x)
				(rationalp r)
				(<= 0 r))
			   (<= (numerator (* r (/ x)))
			       (numerator r))))
		 (:linear
		  :corollary
		  (implies (and (integerp x)
				(< 0 x)
				(rationalp r)
				(<= r 0))
			   (<= (numerator r)
			       (numerator (* (/ x) r)))))
		 (:linear
		  :corollary
		  (implies (and (integerp x)
				(< 0 x)
				(rationalp r)
				(<= r 0))
			   (<= (numerator r)
			       (numerator (* r (/ x))))))))

;;; From rtl/rel5/denominator.lisp

 (defthm denominator-bound
   (implies (and (integerp x)
                 (integerp y)
                 (< 0 y))
            (<= (denominator (* x (/ y)))
		y))
   :rule-classes ((:linear
		  :corollary
		  (implies (and (integerp x)
				(integerp y)
				(< 0 y))
			   (<= (denominator (* x (/ y)))
			       y)))
		  (:linear
		  :corollary
		  (implies (and (integerp x)
				(integerp y)
				(< 0 y))
			   (<= (denominator (* (/ y) x))
			       y)))))

(defthm |(denominator (+ x r))|
  (and
   (implies (and (rationalp r)
		 (integerp x))
	    (equal (denominator (+ x r))
		   (denominator r)))
   (implies (and (rationalp r)
		 (integerp x))
	    (equal (denominator (+ r x))
		   (denominator r)))))