1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
|
; Arithmetic-5 Library
; Written by Robert Krug
; Copyright/License:
; See the LICENSE file at the top level of the arithmetic-5 library.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; simplify.lisp
;;;
;;;
;;; This book contains three types of rules:
;;; 1. simplify-terms-such-as-ax+bx-rel-0
;;;
;;; assuming a, b, and x are acl2-numberp
;;; (equal (+ x (* b x)) 0) ==> (or (equal x 0) (equal (+ 1 b) 0))
;;; (equal (+ (* a x) (* b x)) 0) ==> (or (equal x 0) (equal (+ a b) 0))
;;;
;;; 2. Cancel "like" terms on either side of an equality or inequality.
;;;
;;; A couple of simple example of cancelling like terms:
;;;
;;; (equal (+ a (* 2 c) d)
;;; (+ b c d))
;;; ===>
;;; (equal (+ a c)
;;; b)
;;;
;;; Note that just as for normailze.liso, there are two distinct
;;; behaviours for cancelling like factors:
;;;
;;; Under the default theory, gather-exponents:
;;;
;;; (equal (* a (expt b n))
;;; (* c (expt b m)))
;;; ===>
;;; (equal (* a (expt b (- n m)))
;;; c)
;;;
;;; Under the other theory, scatter-exponents
;;;
;;; (equal (* a (expt b n))
;;; (* c (expt b m)))
;;; ===>
;;; no change
;;;
;;; Under both theories:
;;;
;;; (equal (* a (expt b (* 2 n)))
;;; (* c (expt b n)))
;;; ===>
;;; (equal (* a (expt b n))
;;; (* c))
;;;
;;; (equal (* a (expt c 2) d)
;;; (* b c d))
;;; ===>
;;; (equal (* a c)
;;; b)
;;;
;;; 3. Move "negative" terms form one side of an equality or
;;; inequality to the other.
;;;
;;; A couple of simple example of moving a negative term to the
;;; other side:
;;;
;;; (< (+ a (- b) c)
;;; (+ d e))
;;; ===>
;;; (< (+ a c)
;;; (+ b d e))
;;;
;;; Under the default theory, gather-exponents, we do not move
;;; ``negative'' exponents to the other side. It has proved too
;;; dificult to prevent loops in the general case, and so we avoid
;;; the issue entirely. We could certainly catch the ``simple''
;;; cases, but have not done so.
;;;
;;; Under the other theory, scatter-exponents:
;;;
;;; (equal (* a (/ b) c)
;;; (* d e))
;;; ===>
;;; (equal (* a c)
;;; (* b d e))
;;;
;;; (equal (* a (expt b (- n)) c)
;;; (* d (expt b m)))
;;; ===>
;;; (equal (* a c)
;;; (* d (expt b m) (expt b n)))
;;;
;;; Note that for multiplication, division or exponentiation to a negative
;;; power is considered to be negative.
;;;
;;; See common.lisp for a short description of the general strategy
;;; used in the last two of these types.
;;;
;;; The certification of this book could probably be sped up a good
;;; bit. It is rather slow.
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "ACL2")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(include-book "common")
(local
(include-book "simplify-helper"))
(local
(include-book "basic"))
(table acl2-defaults-table :state-ok t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(local
(defthm rewrite-equal-<-to-iff-<
(equal (equal (< a b)
(< c d))
(iff (< a b)
(< c d)))))
(local
(encapsulate
()
(local (include-book "../../support/top"))
(defthm equal-*-/-1
(equal (equal (* (/ x) y) z)
(if (equal (fix x) 0)
(equal z 0)
(and (acl2-numberp z)
(equal (fix y) (* x z))))))
(defthm equal-*-/-2
(equal (equal (* y (/ x)) z)
(if (equal (fix x) 0)
(equal z 0)
(and (acl2-numberp z)
(equal (fix y) (* z x))))))
))
(local
(encapsulate
()
(local (include-book "../../support/top"))
(defthm equal-*-1
(implies (not (equal (fix x) 0))
(equal (equal (* x y) (* x z))
(equal (fix y) (fix z)))))
(defthm equal-*-2
(implies (not (equal (fix x) 0))
(equal (equal (* y x) (* z x))
(equal (fix y) (fix z)))))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; simplify-terms-such-as-ax+bx-rel-0
;;; assuming a, b, and x are acl2-numberp
;;; (equal (+ x (* b x)) 0) ==> (or (equal x 0) (equal (+ 1 b) 0))
;;; (equal (+ (* a x) (* b x)) 0) ==> (or (equal x 0) (equal (+ a b) 0))
;;; We are, in affect, undoing distributivity when the term is being
;;; compared to zero.
;;; In the example
;;; (thm
;;; (implies (and (acl2-numberp a)
;;; (acl2-numberp b)
;;; (acl2-numberp x))
;;; (equal (+ (* a x) (* b x))
;;; 0))
;;; :otf-flg t)
;;; simplify-terms-such-as-ax+bx-rel-0-fn returns
;;; ((COMMON . X)
;;; (REMAINDER BINARY-+ A B))
(defun simplify-terms-such-as-ax+bx-rel-0-fn (sum)
(declare (xargs :guard t))
;; We look for any factors common to each addend of sum. If we
;; find any, we return a binding list with common bound to the
;; product of these factors, and remainder bound to the original
;; sum but with the common factors removed from each addend.
(if (eq (fn-symb sum) 'BINARY-+)
(let ((common-factors (common-factors (factors (arg1 sum))
(arg2 sum))))
(if common-factors
(let ((common (make-product common-factors))
(remainder (remainder common-factors sum)))
(list (cons 'common common)
(cons 'remainder remainder)))
nil))
nil))
;;; assuming a, b, and x are acl2-numberp
;;; (equal (+ x (* b x)) 0) ==> (or (equal x 0) (equal (+ 1 b) 0))
;;; (equal (+ (* a x) (* b x)) 0) ==> (or (equal x 0) (equal (+ a b) 0))
(defthm simplify-terms-such-as-ax+bx-=-0
(implies (and (bind-free
(simplify-terms-such-as-ax+bx-rel-0-fn sum)
(common remainder))
(acl2-numberp common)
(acl2-numberp remainder)
(equal sum
(* common remainder)))
(equal (equal sum 0)
(or (equal common 0)
(equal remainder 0)))))
(defthm simplify-terms-such-as-ax+bx-<-0-rational-remainder
(implies (and (bind-free
(simplify-terms-such-as-ax+bx-rel-0-fn sum)
(common remainder))
(acl2-numberp common)
(real/rationalp remainder)
(equal sum
(* common remainder)))
(equal (< sum 0)
(cond ((< common 0)
(< 0 remainder))
((< 0 common)
(< remainder 0))
(t
nil)))))
(defthm simplify-terms-such-as-ax+bx-<-0-rational-common
(implies (and (bind-free
(simplify-terms-such-as-ax+bx-rel-0-fn sum)
(common remainder))
(real/rationalp common)
(acl2-numberp remainder)
(equal sum
(* common remainder)))
(equal (< sum 0)
(cond ((< common 0)
(< 0 remainder))
((< 0 common)
(< remainder 0))
(t
nil))))
:hints (("Goal" :use (:instance simplify-terms-such-as-ax+bx-<-0-rational-remainder
(common remainder)
(remainder common)))))
(defthm simplify-terms-such-as-0-<-ax+bx-rational-remainder
(implies (and (bind-free
(simplify-terms-such-as-ax+bx-rel-0-fn sum)
(common remainder))
(acl2-numberp common)
(real/rationalp remainder)
(equal sum
(* common remainder)))
(equal (< 0 sum)
(cond ((< 0 common)
(< 0 remainder))
((< common 0)
(< remainder 0))
(t
nil)))))
(defthm simplify-terms-such-as-0-<-ax+bx-rational-common
(implies (and (bind-free
(simplify-terms-such-as-ax+bx-rel-0-fn sum)
(common remainder))
(real/rationalp common)
(acl2-numberp remainder)
(equal sum
(* common remainder)))
(equal (< 0 sum)
(cond ((< 0 common)
(< 0 remainder))
((< common 0)
(< remainder 0))
(t
nil))))
:hints (("Goal" :use (:instance simplify-terms-such-as-0-<-ax+bx-rational-remainder
(common remainder)
(remainder common)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; simplify-sums-equal and simplify-sums-<
;;; We wish to cancel like addends from both sides of af an equality
;;; or inequality. We scan the sums on either side of the relation,
;;; and construct a pair of addend-info-lists. We then find the first
;;; match in these lists and cancel it.
(defun addend-val (addend)
(declare (xargs :guard t))
;; We wish to subtract the ``smaller'' of two matching addends.
;;
(cond ((variablep addend)
(list 0 1 0))
((constant-p addend)
(let ((val (unquote addend)))
(if (rationalp val) ; OK, no constant reals
(list 0 0 (abs val))
(list 0 0 1))))
((eq (ffn-symb addend) 'UNARY--)
(addend-val (arg1 addend)))
((and (eq (ffn-symb addend) 'BINARY-*)
(constant-p (arg1 addend)))
(let ((val (unquote (arg1 addend))))
(if (rationalp val)
(list (abs val) 0 0)
(list 1 0 0))))
(t
(list 0 1 0))))
(defun addend-info-entry (x)
(declare (xargs :guard t))
(list (addend-pattern x) (addend-val x) x))
(defun addend-info-list (x)
(declare (xargs :guard t))
(if (eq (fn-symb x) 'BINARY-+)
(cons (addend-info-entry (arg1 x))
(addend-info-list (arg2 x)))
(list (addend-info-entry x))))
(local
(encapsulate
()
(local
(defthm temp-1
(good-val-triple-p (addend-val x))))
(defthm addend-info-list-thm
(info-list-p (addend-info-list x)))
))
(defun assoc-addend (x info-list)
(declare (xargs :guard (info-list-p info-list)))
(cond ((endp info-list)
nil)
((matching-addend-patterns-p x (caar info-list))
(car info-list))
(t
(assoc-addend x (cdr info-list)))))
(defun first-match-in-addend-info-lists (info-list1 info-list2 mfc state)
(declare (xargs :guard (and (info-list-p info-list1)
(info-list-p info-list2))
:guard-hints (("Goal" :in-theory (disable good-val-triple-p
negate-match
val-<)))))
(if (endp info-list1)
nil
(let ((temp (assoc-addend (car (car info-list1)) info-list2)))
(if temp
(cond ((and ;; We want the ``smaller'' match
(val-< (cadr (car info-list1))
(cadr temp))
;; prevent various odd loops
(stable-under-rewriting-sums (negate-match
(caddr (car info-list1)))
mfc state))
(list (cons 'x (negate-match (caddr (car info-list1))))))
((stable-under-rewriting-sums (negate-match
(caddr temp))
mfc state)
(list (cons 'x (negate-match (caddr temp)))))
(t
(first-match-in-addend-info-lists (cdr info-list1) info-list2
mfc state)))
(first-match-in-addend-info-lists (cdr info-list1) info-list2
mfc state)))))
(defun find-matching-addends (lhs rhs mfc state)
(declare (xargs :guard t
:verify-guards nil))
(let* ((info-list1 (addend-info-list lhs))
(info-list2 (if info-list1
(addend-info-list rhs)
nil)))
(if info-list2
(first-match-in-addend-info-lists info-list1 info-list2
mfc state)
nil)))
(verify-guards find-matching-addends)
(defthm simplify-sums-equal
(implies (and (syntaxp (not (quotep lhs)))
(syntaxp (not (quotep rhs)))
(syntaxp (in-term-order-+ lhs mfc state))
(syntaxp (in-term-order-+ rhs mfc state))
(acl2-numberp lhs)
(acl2-numberp rhs)
(bind-free
(find-matching-addends lhs rhs mfc state)
(x)))
(equal (equal lhs rhs)
(equal (+ x lhs) (+ x rhs)))))
(local
(in-theory (disable simplify-sums-equal)))
(defthm simplify-sums-<
(implies (and (syntaxp (not (quotep lhs)))
(syntaxp (not (quotep rhs)))
(syntaxp (in-term-order-+ lhs mfc state))
(syntaxp (in-term-order-+ rhs mfc state))
(acl2-numberp lhs)
(acl2-numberp rhs)
(bind-free
(find-matching-addends lhs rhs mfc state)
(x)))
(equal (< lhs rhs)
(< (+ x lhs) (+ x rhs)))))
(local
(in-theory (disable simplify-sums-<)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun negative-addend-p (x)
(declare (xargs :guard t))
(or (and (eq (fn-symb x) 'UNARY--)
(or (variablep (arg1 x))
(not (equal (ffn-symb (arg1 x)) 'UNARY--))))
(and (eq (fn-symb x) 'BINARY-*)
(rational-constant-p (arg1 x))
(< (unquote (arg1 x)) 0))))
(defun find-negative-addend1 (x mfc state)
(declare (xargs :guard t))
(cond ((not (eq (fn-symb x) 'BINARY-+))
(if (and (negative-addend-p x)
;; prevent various odd loops
(stable-under-rewriting-sums (negate-match x)
mfc state))
(list (cons 'x (negate-match x)))
nil))
((and (negative-addend-p (arg1 x))
(stable-under-rewriting-sums (negate-match (arg1 x))
mfc state))
(list (cons 'x (negate-match (arg1 x)))))
((eq (fn-symb (arg2 x)) 'BINARY-+)
(find-negative-addend1 (arg2 x) mfc state))
((and (negative-addend-p (arg2 x))
(stable-under-rewriting-sums (negate-match (arg2 x))
mfc state))
(list (cons 'x (negate-match (arg2 x)))))
(t
nil)))
(defun find-negative-addend (lhs rhs mfc state)
(declare (xargs :guard t))
(let ((temp1 (find-negative-addend1 lhs mfc state)))
(if temp1
temp1
(let ((temp2 (find-negative-addend1 rhs mfc state)))
(if temp2
temp2
nil)))))
(defthm prefer-positive-addends-equal
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
(syntaxp (in-term-order-+ lhs mfc state))
(syntaxp (in-term-order-+ rhs mfc state))
(syntaxp (or (equal (fn-symb lhs) 'BINARY-+)
(equal (fn-symb rhs) 'BINARY-+)))
(bind-free
(find-negative-addend lhs rhs mfc state)
(x)))
(equal (equal lhs rhs)
(equal (+ x lhs) (+ x rhs)))))
(local
(in-theory (disable prefer-positive-addends-equal)))
(defthm prefer-positive-addends-<
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
(syntaxp (in-term-order-+ lhs mfc state))
(syntaxp (in-term-order-+ rhs mfc state))
(syntaxp (or (equal (fn-symb lhs) 'BINARY-+)
(equal (fn-symb rhs) 'BINARY-+)))
(bind-free
(find-negative-addend lhs rhs mfc state)
(x)))
(equal (< lhs rhs)
(< (+ x lhs) (+ x rhs)))))
(local
(in-theory (disable prefer-positive-addends-<)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defthm simplify-products-gather-exponents-equal
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
(syntaxp (not (quotep lhs)))
(syntaxp (not (quotep rhs)))
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-matching-factors-gather-exponents lhs rhs mfc state)
(x))
;; Something is not right if x = +/-1. This will
;; presumably be rewritten away later. We abort
;; for now.
(syntaxp (not (equal x ''1)))
(syntaxp (not (equal x ''-1)))
(case-split (acl2-numberp x))
(case-split (not (equal x 0))))
(equal (equal lhs rhs)
(equal (* x lhs) (* x rhs)))))
(local
(in-theory (disable simplify-products-gather-exponents-equal)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defthm simplify-products-gather-exponents-<
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
(syntaxp (not (quotep lhs)))
(syntaxp (not (quotep rhs)))
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-rational-matching-factors-gather-exponents lhs rhs
mfc state)
(x))
;; Something is not right if x = +/-1. This will
;; presumably be rewritten away later. We abort
;; for now.
(syntaxp (not (equal x ''1)))
(syntaxp (not (equal x ''-1)))
(case-split (real/rationalp x))
(case-split (not (equal x 0))))
(equal (< lhs rhs)
(cond ((< 0 x)
(< (* x lhs) (* x rhs)))
(t
(< (* x rhs) (* x lhs)))))))
(local
(in-theory (disable simplify-products-gather-exponents-<)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defthm simplify-products-scatter-exponents-equal
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
(syntaxp (not (quotep lhs)))
(syntaxp (not (quotep rhs)))
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-matching-factors-scatter-exponents lhs rhs mfc state)
(x))
(syntaxp (not (equal x ''1)))
(syntaxp (not (equal x ''-1)))
(case-split (acl2-numberp x))
(case-split (not (equal x 0))))
(equal (equal lhs rhs)
(equal (* x lhs) (* x rhs)))))
(local
(in-theory (disable simplify-products-scatter-exponents-equal)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defthm simplify-products-scatter-exponents-<
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
(syntaxp (not (quotep lhs)))
(syntaxp (not (quotep rhs)))
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-rational-matching-factors-scatter-exponents lhs rhs
mfc state)
(x))
(syntaxp (not (equal x ''1)))
(syntaxp (not (equal x ''-1)))
(case-split (real/rationalp x))
(case-split (not (equal x 0))))
(equal (< lhs rhs)
(cond ((< 0 x)
(< (* x lhs) (* x rhs)))
(t
(< (* x rhs) (* x lhs)))))))
(local
(in-theory (disable simplify-products-scatter-exponents-<)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#|
;;; We do not include theorems such as the below
;;; prefer-positive-exponents-gather-exponents-equal because it is too
;;; difficult to prevent looping.
;;; Add an example here!!!
(defthm prefer-positive-exponents-gather-exponents-equal
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-rational-negative-factor-gather-exponents lhs rhs
mfc state)
(x))
(case-split (rationalp x))
(case-split (not (equal x 0))))
(equal (equal lhs rhs)
(equal (* (/ x) lhs) (* (/ x) rhs)))))
|#
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This should probably be refactored and cleaned up. Do I have
;;; divisive-factor-p defined anywhere already? Am I consistent in
;;; my notions? Is it consistent with invert-match?
(defun find-divisive-factor-scatter-exponents2 (x mfc state)
(declare (xargs :guard t))
(cond ((or (variablep x)
(fquotep x))
nil)
;; Is this correct?
((eq (ffn-symb x) 'UNARY--)
(find-divisive-factor-scatter-exponents2 (arg1 x) mfc state))
((eq (ffn-symb x) 'UNARY-/)
(if (stable-under-rewriting-products (invert-match x) mfc state)
(list (cons 'x (invert-match x)))
nil))
((eq (ffn-symb x) 'EXPT)
(cond ((eq (fn-symb (arg1 x)) 'UNARY-/)
(if (stable-under-rewriting-products (invert-match x) mfc state)
(list (cons 'x (invert-match x)))
nil))
((and (quotep (arg1 x))
(consp (cdr (arg1 x)))
(not (integerp (cadr (arg1 x))))
(rationalp (cadr (arg1 x))) ; OK, no realp constants
(eql (numerator (cadr (arg1 x))) 1))
(if (stable-under-rewriting-products (invert-match x) mfc state)
(list (cons 'x (invert-match x)))
nil))
((eq (fn-symb (arg2 x)) 'UNARY--)
(if (stable-under-rewriting-products (invert-match x) mfc state)
(list (cons 'x (invert-match x)))
nil))
((and (eq (fn-symb (arg2 x)) 'BINARY-*)
(rational-constant-p (arg1 (arg2 x)))
(< (unquote (arg1 (arg2 x))) 0))
(if (stable-under-rewriting-products (invert-match x) mfc state)
(list (cons 'x (invert-match x)))
nil))
(t
nil)))
((eq (ffn-symb x) 'BINARY-*)
(let ((temp (find-divisive-factor-scatter-exponents2 (arg1 x)
mfc state)))
(if temp
temp
(find-divisive-factor-scatter-exponents2 (arg2 x)
mfc state))))
(t
nil)))
(defun find-divisive-factor-scatter-exponents1 (x mfc state)
(declare (xargs :guard t))
(cond ((or (variablep x)
(fquotep x))
nil)
((eq (ffn-symb x) 'BINARY-+)
(let ((temp (find-divisive-factor-scatter-exponents2 (arg1 x)
mfc state)))
(if temp
temp
(find-divisive-factor-scatter-exponents1 (arg2 x)
mfc state))))
(t
(find-divisive-factor-scatter-exponents2 x mfc state))))
(defun find-divisive-factor-scatter-exponents (lhs rhs mfc state)
(declare (xargs :guard t))
(let ((temp1 (find-divisive-factor-scatter-exponents1 lhs mfc state)))
(if temp1
temp1
(let ((temp2 (find-divisive-factor-scatter-exponents1 rhs mfc state)))
(if temp2
temp2
nil)))))
(defthm prefer-positive-exponents-scatter-exponents-equal
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
; (syntaxp (not (equal rhs ''0)))
; (syntaxp (not (equal lhs ''0)))
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-divisive-factor-scatter-exponents lhs rhs
mfc state)
(x))
(syntaxp (not (equal x ''1)))
(syntaxp (not (equal x ''-1)))
(case-split (acl2-numberp x))
(case-split (not (equal x 0))))
(equal (equal lhs rhs)
(equal (* x lhs) (* x rhs)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; This should probably be refactored and cleaned up. Do I have
;;; divisive-factor-p defined anywhere already?
(defun find-rational-divisive-factor-scatter-exponents2 (x mfc state)
(declare (xargs :guard t))
(cond ((or (variablep x)
(fquotep x))
nil)
((eq (ffn-symb x) 'UNARY--)
(find-rational-divisive-factor-scatter-exponents2 (arg1 x) mfc state))
((eq (ffn-symb x) 'UNARY-/)
(if (and (proveably-real/rational 'x `((x . ,x)) mfc state)
(stable-under-rewriting-products (invert-match x) mfc state))
(list (cons 'x (invert-match x)))
nil))
((eq (ffn-symb x) 'EXPT)
(cond ((eq (fn-symb (arg1 x)) 'UNARY-/)
(if (and (proveably-real/rational 'x `((x . ,x)) mfc state)
(stable-under-rewriting-products (invert-match x) mfc state))
(list (cons 'x (invert-match x)))
nil))
((and (quotep (arg1 x))
(consp (cdr (arg1 x)))
(not (integerp (cadr (arg1 x))))
(rationalp (cadr (arg1 x))) ; OK, no realp constants
(eql (numerator (cadr (arg1 x))) 1))
(if (and (proveably-real/rational 'x `((x . ,x)) mfc state)
(stable-under-rewriting-products (invert-match x) mfc state))
(list (cons 'x (invert-match x)))
nil))
((eq (fn-symb (arg2 x)) 'UNARY--)
(if (and (proveably-real/rational 'x `((x . ,x)) mfc state)
(stable-under-rewriting-products (invert-match x) mfc state))
(list (cons 'x (invert-match x)))
nil))
((and (eq (fn-symb (arg2 x)) 'BINARY-*)
(rational-constant-p (arg1 (arg2 x)))
(< (unquote (arg1 (arg2 x))) 0))
(if (and (proveably-real/rational 'x `((x . ,x)) mfc state)
(stable-under-rewriting-products (invert-match x) mfc state))
(list (cons 'x (invert-match x)))
nil))
(t
nil)))
((eq (ffn-symb x) 'BINARY-*)
(let ((temp (find-rational-divisive-factor-scatter-exponents2 (arg1 x) mfc state)))
(if temp
temp
(find-rational-divisive-factor-scatter-exponents2 (arg2 x) mfc state))))
(t
nil)))
(defun find-rational-divisive-factor-scatter-exponents1 (x mfc state)
(declare (xargs :guard t))
(cond ((or (variablep x)
(fquotep x))
nil)
((eq (ffn-symb x) 'BINARY-+)
(let ((temp (find-rational-divisive-factor-scatter-exponents2 (arg1 x) mfc state)))
(if temp
temp
(find-rational-divisive-factor-scatter-exponents1 (arg2 x) mfc state))))
(t
(find-rational-divisive-factor-scatter-exponents2 x mfc state))))
(defun find-rational-divisive-factor-scatter-exponents (lhs rhs mfc state)
(declare (xargs :guard t))
(let ((temp1 (find-rational-divisive-factor-scatter-exponents1 lhs mfc state)))
(if temp1
temp1
(let ((temp2 (find-rational-divisive-factor-scatter-exponents1 rhs mfc state)))
(if temp2
temp2
nil)))))
(defthm prefer-positive-exponents-scatter-exponents-<
(implies (and (acl2-numberp lhs)
(acl2-numberp rhs)
; (syntaxp (not (equal rhs ''0)))
; (syntaxp (not (equal lhs ''0)))
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-rational-divisive-factor-scatter-exponents lhs rhs
mfc state)
(x)) (syntaxp (not (equal x ''1)))
(syntaxp (not (equal x ''-1)))
(case-split (real/rationalp x))
(case-split (not (equal x 0))))
(equal (< lhs rhs)
(cond ((< 0 x)
(< (* x lhs) (* x rhs)))
(t
(< (* x rhs) (* x lhs)))))))
(defthm prefer-positive-exponents-scatter-exponents-<-2
(implies (and (real/rationalp lhs)
(real/rationalp rhs)
; (syntaxp (not (equal rhs ''0)))
; (syntaxp (not (equal lhs ''0)))
(syntaxp (in-term-order-* lhs mfc state))
(syntaxp (in-term-order-* rhs mfc state))
(bind-free
(find-divisive-factor-scatter-exponents lhs rhs
mfc state)
(x))
(syntaxp (not (equal x ''1)))
(syntaxp (not (equal x ''-1)))
(case-split (acl2-numberp x))
(case-split (not (equal x 0))))
(equal (< lhs rhs)
(cond ((< 0 x)
(< (* x lhs) (* x rhs)))
(t
(< (* x rhs) (* x lhs))))))
:hints (("Goal" :in-theory (enable big-helper-2))))
|