1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
|
; S-Expressions for 4-Valued Logic
; Copyright (C) 2010-2012 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Sol Swords <sswords@centtech.com>
; sexpr-fixpoint-spec.lisp
;
(in-package "ACL2")
(include-book "sexpr-fixpoint")
(include-book "sexpr-advanced")
(include-book "misc/bash" :dir :system)
(local (in-theory (disable set::double-containment
set::nonempty-means-set)))
(set-default-hints '('(:do-not-induct t)))
(local (in-theory (disable append-of-nil)))
;; BOZO probably move all of this stuff into libraries ---------------------
(defthm keys-equiv-cdr-when-not-consp-car
(implies (not (consp (car a)))
(keys-equiv (cdr a) a))
:hints (("Goal" :in-theory (enable hons-assoc-equal))
(witness))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthmd keys-equiv-iff-set-equiv-alist-keys
;; BOZO move to fast-alists book?
(iff (keys-equiv env1 env2)
(set-equiv (alist-keys env1) (alist-keys env2)))
:hints(("goal" :in-theory (e/d (hons-assoc-equal-iff-member-alist-keys)
(set-equiv
alist-keys-member-hons-assoc-equal)))
(witness)))
;; (defthm member-equal-remove
;; (iff (member-equal j (remove k x))
;; (and (not (equal j k))
;; (member-equal j x)))
;; :hints (("goal" :induct (len x))))
(encapsulate
()
(local (defthmd lemma
(iff (set-equiv a (cons b c))
(and (member-equal b a)
(set-equiv (remove b a) (remove b c))))
:hints ((set-reasoning))))
(defthmd set-equiv-breakdown-cons
(equal (set-equiv a (cons b c))
(and (member-equal b a)
(set-equiv (remove b a) (remove b c))))
:hints(("Goal" :use ((:instance lemma))))))
(defthmd set-equiv-breakdown-cons2
(equal (set-equiv (cons b c) a)
(and (member-equal b a)
(set-equiv (remove b a) (remove b c))))
:hints(("Goal" :use ((:instance set-equiv-breakdown-cons)))))
(local
(defthm remove-when-not-member
(implies (not (member-equal k x))
(equal (remove k x)
(append x nil)))
:hints(("Goal" :induct t
:in-theory (enable remove)))))
;;; Matt K. mod, 12/2018: I'm renaming remove-assoc, formerly just below, as
;;; remove-assoc-hons (not to conflict with hons-remove-assoc in
;;; std/alists/hons-remove-assoc.lisp), to avoid conflict with remove-assoc now
;;; built into ACl2. I'm also replacing "remove-assoc" everywhere below by
;;; "remove-assoc-hons".
(defun remove-assoc-hons (key al)
(declare (xargs :guard t))
(if (atom al)
nil
(if (or (atom (car al))
(hons-equal (caar al) key))
(remove-assoc-hons key (cdr al))
(cons (car al) (remove-assoc-hons key (cdr al))))))
(encapsulate nil
(local (set-default-hints nil))
(defthm lookup-in-remove-assoc-hons
(equal (hons-assoc-equal k (remove-assoc-hons key al))
(and (not (equal key k))
(hons-assoc-equal k al)))))
(defthm alist-keys-remove-assoc-hons
(equal (alist-keys (remove-assoc-hons k a))
(remove k (alist-keys a)))
:hints (("goal" :induct t)))
(defthm keys-equiv-cdr-remove-assoc-hons-car
(implies (and (keys-equiv a b)
(no-duplicatesp-equal (alist-keys a))
(consp (car a)))
(equal (keys-equiv (cdr a)
(remove-assoc-hons (caar a) b))
t))
:hints (("goal" :in-theory (enable keys-equiv-iff-set-equiv-alist-keys
alist-keys)
:do-not-induct t)
(set-reasoning))
:otf-flg t)
(defthm alist-equiv-cons-append-remove
(implies (hons-assoc-equal k a)
(alist-equiv (cons (cons k (cdr (hons-assoc-equal k a)))
(append (remove-assoc-hons k a)
b))
(append a b)))
:hints(("Goal" :in-theory (enable alist-equiv-iff-agree-on-bad-guy))))
;; --------------- end of library stuff ----------------------------
(encapsulate ()
(local
(defthm hons-assoc-equal-caar
(implies (and (keys-equiv x y)
(consp (car x)))
(hons-assoc-equal (caar x) y))))
(defthm 4v-env-equiv-remove-assoc-hons
(implies (and (not (4v-env-equiv a (remove-assoc-hons k b)))
(not (hons-assoc-equal k a)))
(not (4v-env-equiv (cons (cons k v) a)
b)))
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-fix))
(witness :ruleset 4v-env-equiv-witnessing)
(witness :ruleset 4v-env-equiv-hons-assoc-equal-ex))
:otf-flg t))
(defthm 4v-alist-<=-append
(implies (and (keys-equiv a b)
(4v-alist-<= a b)
(4v-alist-<= c d))
(4v-alist-<= (append a c)
(append b d)))
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-fix))
(witness)
(witness :ruleset (4v-alist-<=-4v-hons-assoc-equal-example))))
(defthm 4v-sexpr-alist-<=-acons
(implies (not (hons-assoc-equal k al1))
(iff (4v-sexpr-alist-<= (cons (cons k v) al1) al2)
(and (4v-sexpr-<= v (cdr (hons-assoc-equal k al2)))
(4v-sexpr-alist-<= al1 al2))))
:hints (("Goal" :do-not-induct t)
(witness :ruleset (4v-sexpr-alist-<=-hons-assoc-equal-example
4v-sexpr-alist-<=-witnessing))))
(defthm 4v-sexpr-<=-restrict
(implies (and (4v-sexpr-alist-<= a b)
(keys-equiv a b))
(4v-sexpr-<= (4v-sexpr-restrict x a)
(4v-sexpr-restrict x b)))
:hints(("Goal" :in-theory (e/d (keys-equiv-iff-set-equiv-alist-keys)
(4v-alist-<= 4v-sexpr-restrict 4v-sexpr-eval
4v-<=)))
(witness)))
(defthm 4v-sexpr-<=-restrict-x
(implies (4v-sexpr-<= a b)
(4v-sexpr-<= (4v-sexpr-restrict a (list (cons k *4vx-sexpr*)))
b))
:hints (("goal" :in-theory (e/d (4v-<=-trans2) (4v-<=)))
(Witness) (witness)))
(defthm 4v-sexpr-restrict-4v-sexpr-restrict
(4v-sexpr-equiv (4v-sexpr-restrict (4v-sexpr-restrict x al1) al2)
(4v-sexpr-restrict x (append (4v-sexpr-restrict-alist al1 al2)
al2)))
:hints (("goal" :do-not-induct t)
(witness))
:otf-flg t)
(defquant 4v-sexpr-fixpointp (ups vals)
(forall k (implies (hons-assoc-equal k ups)
(4v-sexpr-equiv (4v-sexpr-restrict
(cdr (hons-assoc-equal k ups))
vals)
(cdr (hons-assoc-equal k vals))))))
(verify-guards 4v-sexpr-fixpointp)
(defexample 4v-sexpr-fixpointp-lookup-example
:pattern (4v-sexpr-restrict (cdr (hons-assoc-equal k updatefns)) env)
:templates (k)
:instance-rulename 4v-sexpr-fixpointp-instancing)
(encapsulate nil
(local (witness-disable set-consp-witnessing))
(defthm 4v-sexpr-fixpointp-cdr-updatefns
(implies (and (4v-sexpr-fixpointp updatefns vals)
(no-duplicatesp-equal (alist-keys updatefns)))
(4v-sexpr-fixpointp (cdr updatefns) vals))
:hints (("goal" :in-theory (enable hons-assoc-equal alist-keys no-duplicatesp-equal))
(witness))))
(defun 4v-sexpr-fixpoint-spec (ups)
(if (atom ups)
nil
(b* ((rest (4v-sexpr-fixpoint-spec (cdr ups)))
((when (atom (car ups))) rest)
(name (caar ups))
(upfn (cdar ups))
(composed-with-rest
(4v-sexpr-restrict upfn rest))
(fixpoint (4v-sexpr-restrict composed-with-rest
`((,name x))))
(rest-restrict (4v-sexpr-restrict-alist
rest `((,name . ,fixpoint)))))
(acons name fixpoint rest-restrict))))
(defthm sexpr-fixpoint-spec-hons-assoc-equal-iff
(iff (hons-assoc-equal x (4v-sexpr-fixpoint-spec ups))
(hons-assoc-equal x ups))
:hints (("goal" :induct t)))
(defthmd 4v-sexpr-equiv-fixpoint-eval
(let ((ev-bottom (4v-sexpr-eval x (cons (cons name 'x) env))))
(equal (4v-sexpr-eval x (cons (cons name ev-bottom) env))
ev-bottom))
:hints (("goal" :use ((:instance 4v-sexpr-eval-monotonicp
(env (cons (cons name 'x) env))
(env1 (cons (cons name (4v-sexpr-eval x (cons
(cons name 'x)
env)))
env)))))))
(defexample 4v-sexpr-fixpointp-hons-assoc-equal-ex
:pattern (hons-assoc-equal k ups)
:templates (k)
:instance-rulename 4v-sexpr-fixpointp-instancing)
(defcong 4v-sexpr-alist-equiv iff (4v-sexpr-fixpointp ups fixpoint) 2
:hints ((witness :ruleset (4v-sexpr-fixpointp-witnessing
4v-sexpr-fixpointp-hons-assoc-equal-ex))))
(defthm atom-fixpoint
(implies (not (consp ups))
(4v-sexpr-fixpointp ups x))
:hints ((witness :ruleset 4v-sexpr-fixpointp-witnessing)))
(defthm atom-car-fixpoint
(implies (not (consp (car ups)))
(iff (4v-sexpr-fixpointp (cdr ups) x)
(4v-sexpr-fixpointp ups x)))
:hints (("Goal" :in-theory (enable hons-assoc-equal))
(witness :ruleset (4v-sexpr-fixpointp-witnessing
4v-sexpr-fixpointp-hons-assoc-equal-ex))))
(local (defthm switch-append
(implies (not (hons-assoc-equal x al))
(alist-equiv (append al (list (cons x v)))
(cons (cons x v) al)))
:hints (("goal" :in-theory (enable
alist-equiv-iff-agree-on-bad-guy)))))
(local (defthm switch-append-cons
(implies (not (hons-assoc-equal x al))
(alist-equiv (append al (cons (cons x v) al2))
(cons (cons x v) (append al al2))))
:hints (("goal" :in-theory (enable alist-equiv-iff-agree-on-bad-guy)))))
(encapsulate
nil
(local (set-default-hints nil))
(make-event
(b* (((er res)
(simplify-with-prover
'(implies (not (hons-assoc-equal name env1))
(let* ((x (4v-sexpr-restrict x env1))
(ev-bottom (4v-sexpr-eval x (cons (cons name 'x) env))))
(equal (4v-sexpr-eval x (cons (cons name ev-bottom)
env))
ev-bottom)))
nil '4v-sexpr-equiv-fixpoint-eval-special state))
(res (prettyify-clause-lst res t (w state))))
(value
`(defthm 4v-sexpr-equiv-fixpoint-eval-special
,(car res)
:hints (("goal" :use ((:instance 4v-sexpr-equiv-fixpoint-eval
(x (4v-sexpr-restrict x env1)))))))))))
(local (defthm fixpoint-eval-lookup
(implies (and (4v-sexpr-fixpointp ups fixpoint)
(hons-assoc-equal k ups))
(4v-sexpr-equiv
(cdr (hons-assoc-equal k fixpoint))
(4v-sexpr-restrict (cdr (hons-assoc-equal k ups))
fixpoint)))
:hints ((witness :ruleset 4v-sexpr-fixpointp-hons-assoc-equal-ex))))
(defthm 4v-sexpr-fixpointp-4v-sexpr-fixpoint-spec
(implies (no-duplicatesp-equal (alist-keys ups))
(4v-sexpr-fixpointp ups (4v-sexpr-fixpoint-spec ups)))
:hints (("goal" :induct (4v-sexpr-fixpoint-spec ups)
:in-theory (e/d (no-duplicatesp-equal alist-keys
hons-assoc-equal)
(;sexpr-eval-4v-sexpr-restrict
;4v-sexpr-restrict-4v-sexpr-restrict
4v-sexpr-restrict-alist
4v-sexpr-eval 4v-sexpr-restrict
default-car default-cdr))
:do-not-induct t)
(witness :ruleset 4v-sexpr-fixpointp-witnessing)
(witness :ruleset 4v-sexpr-equiv-witnessing))
:otf-flg t)
(defquant 4v-sexpr-fixpoint-lower-boundp (ups lb)
(forall (fp env)
(implies (and (keys-equiv ups fp)
(4v-alist-<= ;; 4v-env-equiv
(4v-sexpr-eval-alist ups (make-fal fp env))
fp))
(4v-alist-<= (4v-sexpr-eval-alist lb env) fp))))
(verify-guards 4v-sexpr-fixpoint-lower-boundp)
(defun 4v-sexpr-fixpointp-strong (ups fixpoint)
(declare (xargs :guard t))
(and (4v-sexpr-fixpointp ups fixpoint)
(keys-equiv ups fixpoint)
(not (intersectp-equal (alist-keys ups)
(4v-sexpr-vars-list (alist-vals fixpoint))))))
;; This was my previous definition for a fixpoint lower bound. However, it's
;; not quite strong enough. The previous definition implies this one (as we'll
;; prove.)
(defquant 4v-sexpr-fixpoint-lower-boundp2 (ups vals)
(forall fixpoint (implies (4v-sexpr-fixpointp-strong ups fixpoint)
(4v-sexpr-alist-<= vals fixpoint))))
(defun 4v-sexpr-fixpointp-alt1 (ups fp)
(4v-sexpr-alist-equiv (4v-sexpr-restrict-alist ups fp)
fp))
(defthmd 4v-sexpr-alist-equiv-fixpoint
(implies (and (4v-sexpr-fixpointp ups fixpoint)
(keys-equiv ups fixpoint))
(4v-sexpr-alist-equiv (4v-sexpr-restrict-alist ups fixpoint)
fixpoint))
:hints ((witness :ruleset
(4v-sexpr-alist-equiv-witnessing
4v-sexpr-fixpointp-hons-assoc-equal-ex))))
(defthm 4v-sexpr-fixpointp-is-alt1
(implies (keys-equiv ups fixpoint)
(iff (4v-sexpr-fixpointp ups fixpoint)
(4v-sexpr-fixpointp-alt1 ups fixpoint)))
:hints(("Goal" :in-theory (enable 4v-sexpr-alist-equiv-fixpoint)
:do-not-induct t)
(witness :ruleset (4v-sexpr-fixpointp-witnessing
4v-sexpr-alist-equiv-example))))
(defexample 4v-sexpr-fixpoint-lower-boundp-eval-alist-ex
:pattern (4v-sexpr-eval-alist x (append fp env))
:templates (fp env)
:instance-rulename 4v-sexpr-fixpoint-lower-boundp-instancing)
(defthm 4v-sexpr-fixpoint-lower-boundp2-if-lower-boundp
(implies (4v-sexpr-fixpoint-lower-boundp ups lb)
(4v-sexpr-fixpoint-lower-boundp2 ups lb))
:hints (("goal" :do-not-induct t
:in-theory (e/d (4v-sexpr-alist-equiv-is-alt
4v-sexpr-alist-<=-is-alt)
(4v-sexpr-eval)))
(witness :ruleset (4v-sexpr-fixpoint-lower-boundp-witnessing
4v-sexpr-fixpoint-lower-boundp2-witnessing))
(witness :ruleset (4v-sexpr-alist-<=-alt-witnessing
4v-sexpr-alist-<=-alt-eval-alist-ex))
(witness :ruleset 4v-sexpr-alist-equiv-alt-eval-alist-ex)
;; (witness :ruleset 4v-sexpr-<=-witnessing)
(and stable-under-simplificationp
'(:use ((:instance 4v-sexpr-fixpoint-lower-boundp-necc
(fp (4v-sexpr-eval-alist fixpoint0 env0))
(env env0)))))
)
:otf-flg t)
(defthm lower-boundp-nil-for-no-update-fns
(4v-sexpr-fixpoint-lower-boundp ups nil)
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-sexpr-eval))
(witness :ruleset (4v-sexpr-fixpoint-lower-boundp-witnessing))))
(defcong 4v-sexpr-alist-equiv iff (4v-sexpr-fixpoint-lower-boundp ups lb) 1
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-sexpr-eval))
(witness :ruleset (4v-sexpr-fixpoint-lower-boundp-witnessing))
(witness :ruleset (4v-sexpr-fixpoint-lower-boundp-eval-alist-ex))
))
(defthm 4v-sexpr-alist-equiv-nil-any-atom
(implies (atom x)
(equal (4v-sexpr-alist-equiv x nil) t))
:hints (("goal" :do-not-induct t)
(witness :ruleset 4v-sexpr-alist-equiv-witnessing))
:rule-classes nil)
(defthm 4v-sexpr-fixpoint-lower-boundp-atom-ups
(implies (and (syntaxp (not (equal ups ''nil)))
(atom ups))
(iff (4v-sexpr-fixpoint-lower-boundp ups lb)
(4v-sexpr-fixpoint-lower-boundp nil lb)))
:hints (("goal" :use ((:instance 4v-sexpr-alist-equiv-nil-any-atom
(x ups))))))
(defthm lower-boundp-when-atom-car
(implies (and (not (4v-sexpr-fixpoint-lower-boundp ups lb))
(not (consp (car ups))))
(not (4v-sexpr-fixpoint-lower-boundp (cdr ups) lb)))
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-sexpr-eval)
:cases ((consp ups)))
(witness :ruleset (4v-sexpr-fixpoint-lower-boundp-witnessing))
(witness :ruleset (4v-sexpr-fixpoint-lower-boundp-eval-alist-ex))
)
:otf-flg t)
(defthm alist-keys-4v-sexpr-fixpoint-spec
(equal (alist-keys (4v-sexpr-fixpoint-spec ups))
(alist-keys ups))
:hints (("goal" :induct t)))
;; (defthm keys-equiv-4v-sexpr-eval-alist
;; (keys-equiv (4v-sexpr-eval-alist al env)
;; (double-rewrite al))
;; :hints(("Goal" :in-theory (enable keys-equiv-iff-set-equiv-alist-keys))))
;; (defthm keys-equiv-4v-sexpr-fixpoint-spec
;; (keys-equiv (4v-sexpr-fixpoint-spec ups)
;; (double-rewrite ups))
;; :hints(("Goal" :in-theory (enable keys-equiv-iff-set-equiv-alist-keys))))
;; (defcong keys-equiv keys-equiv (cons a b) 2
;; :hints (("goal" :do-not-induct t)
;; (witness)))
;; (local
;; (progn
;; (defthmd replace-fixpoint-in-hons-assoc-equal
;; (implies (key-and-env-equiv (cons (cons k v) a) b)
;; (4v-equiv (cdr (hons-assoc-equal k b))
;; v)))
;; (defthm 4v-<=-cons-append-env
;; (implies (and (4v-alist-<= (cons (cons k v) a) fp0)
;; (keys-equiv (double-rewrite (cons (cons k v) a)) fp0))
;; (4v-<=
;; (4v-sexpr-eval
;; x (cons (cons k v) (append a env)))
;; (4v-sexpr-eval
;; x (append fp0 env))))
;; :hints (("goal" :use ((:instance 4v-alist-<=-append
;; (a (cons (cons k v) a))
;; (b fp0)
;; (c env) (d env)))
;; :do-not-induct t
;; :in-theory (disable 4v-alist-<=-append 4v-fix 4v-<=)))
;; :otf-flg t)
;; (defthm keys-equiv-cons-caar
;; (implies (consp (car x))
;; (keys-equiv (cons (cons (caar x) v) (cdr x))
;; (double-rewrite x))))
;; (defthm key-and-env-equiv-remove-assoc-hons
;; (implies (and (not (4v-env-equiv a (remove-assoc-hons k b)))
;; (not (hons-assoc-equal k a)))
;; (not (key-and-env-equiv (cons (cons k v) a) b)))
;; :hints (("goal" :do-not-induct t
;; :in-theory (e/d (key-and-env-equiv)
;; (4v-fix
;; 4v-env-equiv-to-key-and-env-equiv)))
;; (witness :ruleset 4v-env-equiv-witnessing)
;; (witness :ruleset 4v-env-equiv-hons-assoc-equal-ex))
;; :otf-flg t)
;; (defthm keys-equiv-cons-eval-alist
;; (implies (and (keys-equiv ups fp0)
;; (consp (car ups)))
;; (equal (keys-equiv (cons (cons (caar ups) v)
;; (4v-sexpr-eval-alist (cdr ups) a))
;; fp0)
;; t))
;; :hints (("goal" :in-theory (enable keys-equiv-iff-set-equiv-alist-keys))))
;; (defthmd 4v-alist-<=-acons->remove
;; (implies (not (hons-assoc-equal k a))
;; (iff (4v-alist-<= (cons (cons k v) a) b)
;; (and (4v-<= v (4v-lookup k b))
;; (4v-alist-<= a (remove-assoc-hons k b)))))
;; :hints (("goal" :do-not-induct t
;; :in-theory (disable 4v-fix))
;; (witness :ruleset 4v-alist-<=-witnessing)
;; (witness :ruleset 4v-alist-<=-hons-assoc-equal-example))
;; :otf-flg t)
;; (defthm hack
;; (implies
;; (and
;; (4v-alist-<=
;; (4v-sexpr-eval-alist (4v-sexpr-fixpoint-spec (cdr update-fns))
;; (cons (cons (caar update-fns)
;; (cdr (hons-assoc-equal (caar update-fns)
;; fp0)))
;; env0))
;; (remove-assoc-hons (caar update-fns) fp0))
;; (consp update-fns)
;; (consp (car update-fns))
;; (4v-sexpr-fixpoint-lower-boundp (cdr update-fns)
;; (4v-sexpr-fixpoint-spec (cdr update-fns)))
;; (not (hons-assoc-equal (caar update-fns)
;; (cdr update-fns)))
;; (no-duplicatesp-equal (alist-keys (cdr update-fns)))
;; (keys-equiv update-fns fp0)
;; (key-and-env-equiv (cons (cons (caar update-fns)
;; (4v-sexpr-eval (cdar update-fns)
;; (append fp0 env0)))
;; (4v-sexpr-eval-alist (cdr update-fns)
;; (append fp0 env0)))
;; fp0))
;; (4v-<=
;; (4v-sexpr-eval
;; (cdar update-fns)
;; (cons
;; (cons (caar update-fns) 'x)
;; (append (4v-sexpr-eval-alist (4v-sexpr-fixpoint-spec (cdr update-fns))
;; (cons (cons (caar update-fns) 'x) env0))
;; env0)))
;; (CDR (HONS-ASSOC-EQUAL (CAAR UPDATE-FNS)
;; FP0))))
;; :hints (("goal" :do-not-induct t
;; :in-theory (e/d (alist-keys
;; 4v-alist-<=-acons->remove
;; 4v-alist-<=-trans2
;; replace-fixpoint-in-hons-assoc-equal)
;; (4v-sexpr-restrict-alist
;; 4v-sexpr-eval
;; 4v-alist-<=-acons-1
;; 4v-fix 4v-<=)))))))
(defthmd 4v-alist-<=-acons->remove
(implies (not (hons-assoc-equal k a))
(iff (4v-alist-<= (cons (cons k v) a) b)
(and (4v-<= v (4v-lookup k b))
(4v-alist-<= a (remove-assoc-hons k b)))))
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-fix))
(witness :ruleset 4v-alist-<=-witnessing)
(witness :ruleset 4v-alist-<=-hons-assoc-equal-example))
:otf-flg t)
;; Notation: We'll use
;; - * to apply a substitution (aka 4v-sexpr-restrict(-alist))
;; - : to construct a substitution pair
;; - :: to append substitutions.
;; - \ to remove a binding from a substitution
;; Sketch of proof that we compute a least fixpoint:
;; Induct on length of update-fns. Base case is trivial.
;; In the inductive case, let update-fns = ((s1 : up1) :: upsr), i.e. s1
;; is the first signal bound and up1 is its update function. By IH we
;; have computed lbr, lower bound for upsr. Meaning, for any fpr, envr
;; where fpr has the same keys as upsr and satisfying
;; upsr (fpr :: envr) <= fpr,
;; we have lbr(envr) <= fpr.
;; Our result is:
;; lbf = (s1 : ((up1 * lbr) * (s1 : X)))
;; :: (lbr * (s1 : ((up1 * lbr) * (s1 : X)))).
;; We need to show that for any fp, env where the bound signals of fp are
;; the same as those of ups and ups (fp :: env) <= fp,
;; we have lbf(env) <= fp.
;; Suppose we have such an fp, env. Decomposing, we have
;; upsr (fp :: env) <= fp\s1, and
;; up1 (fp :: env) <= s1(fp).
;; and we need to show
;; ((up1 * lbr) * (s1 : X))(env) <= s1(fp) and
;; (lbr * (s1 : ((up1 * lbr) * (s1 : X)))) (env) <= fp\s1.
;; Evaluation rule for substitution (4v-sexpr-eval-4v-sexpr-restrict(-alist)):
;; (a * b)(env) = a(b(env) :: env).
;; So we reduce the above obligations to:
;; (up1 * lbr)((s1 : X) :: env)
;; = up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) <= s1(fp)
;; and
;; lbr ((s1 : ((up1 * lbr) * (s1 : X)) (env)) :: env) =
;; lbr ((s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= s1\fp1.
;; Looking at the second obligation, we need to show
;; lbr ((s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= s1\fp1.
;;
;; Using the IH, let fpr, envr as above be fp\s1 and
;; ((s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env).
;; If we can show
;; upsr (fpr :: envr) <= fpr, i.e.
;; upsr (fp\s1 :: (s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= fp\s1,
;; then we have lbr(envr) <= fpr, i.e.
;; lbr ((s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= fp\s1,
;; and we'll be done.
;; But we already know
;; upsr (fp :: env) <= fp\s1. By monotonicity of upsr and transitivity
;; of <=, we can just show
;; fp\s1 :: (s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) <= fp.
;; This decomposes to:
;; fp\s1 <= fp\s1 (trivial)
;; and up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) <= s1(fp),
;; which is just the first obligation above.
;; Looking at the first obligation, we need to show
;; up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) <= s1(fp)m
;; but we have
;; up1 (fp :: env) <= s1(fp). It suffices to show that
;; up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) has the
;; same keys as fp (trivial) and ... <= fp.
;; That is,
;; lbr ((s1 : X) :: env) :: (s1 : X) <= fp,
;; which decomposes to
;; X <= s1(fp), (trivial),
;; and
;; lbr ((s1 : X) :: env) <= fp\s1.
;; Here we apply the IH again: let fpr, envr as above be fp\s1 and
;; ((s1 : X) :: env).
;; If we can show
;; upsr (fpr :: envr) <= fpr, i.e.
;; upsr (fp\s1 :: (s1 : X) :: env) <= fp\s1,
;; then we have lbr(envr) <= fpr, i.e.
;; lbr ((s1 : X) :: env) <= fp\s1,
;; and we'll be done.
;; But we already know
;; upsr (fp :: env) <= fp\s1. By monotonicity of upsr and transitivity
;; of <=, we can just show
;; fp\s1 :: (s1 : X) <= fp.
;; This decomposes to:
;; fp\s1 <= fp\s1 (trivial)
;; and X <= s1(fp), also trivial.
;; Working from bottom up:
(defthm |fp\s1 :: (s1 : X) <= fp|
(4v-alist-<= (append (remove-assoc-hons s1 fp)
(list (cons s1 *4vx*)))
fp)
:hints ((witness :ruleset 4v-alist-<=-witnessing)))
(defthmd 4v-alist-<=-append-cons-append
(implies (and (set-equiv (double-rewrite (cons bk (alist-keys a)))
(double-rewrite (alist-keys d)))
(4v-alist-<= (append a (list (cons bk bv)))
d)
(4v-alist-<= c e))
(4v-alist-<= (append a (cons (cons bk bv) c))
(append d e)))
:hints (("goal" :do-not-induct t
:in-theory (e/d* (hons-assoc-equal-iff-member-alist-keys
;; hons-assoc-equal-when-not-member-alist-keys
)
(alist-keys-member-hons-assoc-equal
4v-fix 4v-<= default-car default-cdr
append member-when-atom member-equal
alist-keys-when-atom
;; set-equiv-asym set-equiv-trans
(:rules-of-class :type-prescription :here))))
(witness :ruleset (4v-alist-<=-witnessing
4v-alist-<=-4v-lookup-example))
(witness :ruleset set-equiv-member-template)))
;(why 4v-alist-<=-trans2)
;(why 4V-ALIST-<=-SEXPR-EVAL-ALIST-MONOTONIC-ENV)
;(why 4v-alist-<=-append-cons-append)
;; Assuming
;; upsr (fp :: env) <= fp\s1,
;; prove
;; upsr (fp\s1 :: (s1 : X) :: env) <= fp\s1.
(defthm |upsr (fp\s1 :: (s1 : X) :: env) <= fp\s1|
(implies (and (4v-alist-<= (4v-sexpr-eval-alist upsr (append fp env))
(remove-assoc-hons s1 fp))
(set-equiv (alist-keys fp)
(cons s1 (alist-keys upsr))))
(4v-alist-<= (4v-sexpr-eval-alist upsr
(append (remove-assoc-hons s1 fp)
(cons (cons s1 *4vx*)
env)))
(remove-assoc-hons s1 fp)))
:hints(("Goal" :in-theory
(e/d (4v-alist-<=-trans2
hons-assoc-equal-iff-member-alist-keys
set-equiv-breakdown-cons
4v-alist-<=-append-cons-append)
(switch-append-cons
switch-append
alist-keys-member-hons-assoc-equal))
:do-not-induct t)))
;; Given
;; upsr (fp :: env) <= fp\s1
;; and lbr a FLB of upsr,
;; show
;; lbr ((s1 : X) :: env) <= fp\s1.
(defthm |lbr ((s1 : X) :: env) <= fp\s1|
(implies (and (4v-sexpr-fixpoint-lower-boundp upsr lbr)
(4v-alist-<=
(4v-sexpr-eval-alist upsr (append fp env))
(remove-assoc-hons s1 fp))
(set-equiv (alist-keys fp)
(cons s1 (alist-keys upsr)))
(not (member-equal s1 (alist-keys upsr))))
(4v-alist-<=
(4v-sexpr-eval-alist
lbr
(cons (cons s1 *4vx*) env))
(remove-assoc-hons s1 fp)))
:hints (("goal" :use
((:instance 4v-sexpr-fixpoint-lower-boundp-necc
(ups upsr)
(lb lbr)
(fp (remove-assoc-hons s1 fp))
(env (cons (cons s1 *4vx*) env))))
:in-theory (e/d (set-equiv-breakdown-cons)
(alist-keys-member-hons-assoc-equal
switch-append
switch-append-cons))
:do-not-induct t))
:otf-flg t)
;; Looking at the first obligation, we need to show
;; up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) <= s1(fp)
;; but we have
;; up1 (fp :: env) <= s1(fp). It suffices to show that "..." has the
;; same keys as fp (trivial) and ... <= fp.
;; That is,
;; lbr ((s1 : X) :: env) :: (s1 : X) <= fp,
;; which decomposes to
;; lbr ((s1 : X) :: env) <= fp\s1 (same as the second obligation above)
;; and
;; X <= s1(fp), trivial.
(defthm |lbr ((s1 : X) :: env) :: (s1 : X) <= fp|
(implies (4v-alist-<=
(4v-sexpr-eval-alist
lbr (cons (cons s1 *4vx*) env))
(remove-assoc-hons s1 fp))
(4v-alist-<=
(append (4v-sexpr-eval-alist
lbr (cons (cons s1 *4vx*) env))
(list (cons s1 *4vx*)))
fp))
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-fix 4v-sexpr-eval))
(witness :ruleset (4v-alist-<=-witnessing
4v-alist-<=-4v-lookup-example))))
;; given lbr ((s1 : X) :: env) <= fp\s1
;; and up1 (fp :: env) <= s1(fp),
;; show up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) <= s1(fp).
(defthm |up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) <= s1(fp)|
(implies (and (4v-alist-<=
(4v-sexpr-eval-alist
lbr (cons (cons s1 *4vx*) env))
(remove-assoc-hons s1 fp))
(4v-<= (4v-sexpr-eval up1 (append fp env))
(4v-lookup s1 fp))
(set-equiv (alist-keys fp)
(cons s1 (alist-keys lbr))))
(4v-<=
(4v-sexpr-eval
up1
(append (4v-sexpr-eval-alist
lbr (cons (cons s1 *4vx*) env))
(cons (cons s1 *4vx*) env)))
(4v-lookup s1 fp)))
:hints (("goal" :in-theory
(e/d (4v-<=-trans2
4v-alist-<=-append-cons-append)
(4v-<= switch-append
switch-append-cons 4v-lookup))
:do-not-induct t)))
(defthmd 4v-alist-<=-append->remove
(implies (not (hons-assoc-equal k a))
(iff (4v-alist-<= (append a (list (cons k v))) b)
(and (4v-<= v (4v-lookup k b))
(4v-alist-<= a (remove-assoc-hons k b)))))
:hints (("goal" :do-not-induct t
:in-theory (disable 4v-fix))
(witness :ruleset 4v-alist-<=-witnessing)
(witness :ruleset 4v-alist-<=-hons-assoc-equal-example))
:otf-flg t)
;; But we already know
;; upsr (fp :: env) <= fp\s1. By monotonicity of upsr and transitivity
;; of <=, we can just show
;; fp\s1 :: (s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) <= fp.
;; This decomposes to:
;; fp\s1 <= fp\s1 (trivial)
;; and up1(lbr((s1 : X) :: env) :: (s1 : X) :: env) <= s1(fp),
;; which is just the first obligation above.
(defthm
|upsr (fp\s1 :: (s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= fp\s1|
(implies (and (4v-alist-<=
(4v-sexpr-eval-alist upsr (append fp env))
(remove-assoc-hons s1 fp))
(4v-<= (4v-sexpr-eval up1 (append fp env))
(4v-lookup s1 fp))
(set-equiv (alist-keys fp)
(cons s1 (alist-keys upsr)))
(set-equiv (alist-keys lbr)
(alist-keys upsr))
(not (member-equal s1 (alist-keys upsr)))
(4v-sexpr-fixpoint-lower-boundp upsr lbr))
(4v-alist-<=
(4v-sexpr-eval-alist
upsr
(append (remove-assoc-hons s1 fp)
(cons (cons s1 (4v-sexpr-eval
up1
(append (4v-sexpr-eval-alist
lbr
(cons (cons s1 *4vx*) env))
(cons (cons s1 *4vx*)
env))))
env)))
(remove-assoc-hons s1 fp)))
:hints(("Goal" :in-theory
(e/d (4v-alist-<=-trans2
hons-assoc-equal-iff-member-alist-keys
set-equiv-breakdown-cons
set-equiv-breakdown-cons2
4v-alist-<=-append->remove
4v-alist-<=-append-cons-append)
(switch-append-cons
switch-append 4v-<= 4v-fix 4v-lookup
alist-keys-member-hons-assoc-equal))
:do-not-induct t)))
;; Using the IH, let fpr, envr as above be fp\s1 and
;; ((s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env).
;; If we can show
;; upsr (fpr :: envr) <= fpr, i.e.
;; upsr (fp\s1 :: (s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= fp\s1,
;; then we have lbr(envr) <= fpr, i.e.
;; lbr ((s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= fp\s1,
;; and we'll be done.
(defthm |lbr ((s1 : up1(lbr((s1 : X) :: env) :: (s1 : X) :: env)) :: env) <= fp\s1|
(implies (and (4v-alist-<=
(4v-sexpr-eval-alist upsr (append fp env))
(remove-assoc-hons s1 fp))
(4v-<= (4v-sexpr-eval up1 (append fp env))
(4v-lookup s1 fp))
(set-equiv (alist-keys fp)
(cons s1 (alist-keys upsr)))
(set-equiv (alist-keys lbr)
(alist-keys upsr))
(not (member-equal s1 (alist-keys upsr)))
(4v-sexpr-fixpoint-lower-boundp upsr lbr))
(4v-alist-<=
(4v-sexpr-eval-alist
lbr
(cons (cons s1 (4v-sexpr-eval
up1
(append (4v-sexpr-eval-alist
lbr
(cons (cons s1 *4vx*) env))
(cons (cons s1 *4vx*)
env))))
env))
(remove-assoc-hons s1 fp)))
:hints (("goal" :use ((:instance 4v-sexpr-fixpoint-lower-boundp-necc
(ups upsr)
(lb lbr)
(fp (remove-assoc-hons s1 fp))
(env (cons (cons s1 (4v-sexpr-eval
up1
(append (4v-sexpr-eval-alist
lbr
(cons (cons s1 *4vx*) env))
(cons (cons s1 *4vx*)
env))))
env))))
:in-theory
(e/d (4v-alist-<=-trans2
hons-assoc-equal-iff-member-alist-keys
set-equiv-breakdown-cons
set-equiv-breakdown-cons2
4v-alist-<=-append->remove
4v-alist-<=-append-cons-append)
(switch-append-cons
switch-append 4v-<= 4v-fix 4v-lookup
alist-keys-member-hons-assoc-equal)))))
;; Our result is:
;; lbf = (s1 : ((up1 * lbr) * (s1 : X)))
;; :: (lbr * (s1 : ((up1 * lbr) * (s1 : X)))).
(defthm inductive-step
(implies (and (4v-sexpr-fixpoint-lower-boundp upsr lbr)
(set-equiv (alist-keys upsr)
(alist-keys lbr))
(not (member-equal s1 (alist-keys upsr))))
(4v-sexpr-fixpoint-lower-boundp
(cons (cons s1 up1) upsr)
(cons (cons s1 (4v-sexpr-restrict
(4v-sexpr-restrict up1 lbr)
(list (cons s1
*4vx-sexpr*))))
(4v-sexpr-restrict-alist
lbr (list (cons s1 (4v-sexpr-restrict
(4v-sexpr-restrict up1 lbr)
(list (cons s1
*4vx-sexpr*)))))))))
:hints (("goal" :do-not-induct t
:in-theory (e/d (4v-alist-<=-acons->remove
keys-equiv-iff-set-equiv-alist-keys
hons-assoc-equal-iff-member-alist-keys)
(4v-<= 4v-fix 4v-lookup
switch-append switch-append-cons
alist-keys-member-hons-assoc-equal
4v-sexpr-eval)))
(witness :ruleset 4v-sexpr-fixpoint-lower-boundp-witnessing))
:otf-flg t)
(defthm 4v-sexpr-fixpoint-lower-boundp-4v-sexpr-fixpoint-spec
(implies (no-duplicatesp-equal (alist-keys update-fns))
(4v-sexpr-fixpoint-lower-boundp
update-fns
(4v-sexpr-fixpoint-spec update-fns)))
:hints (("goal" :induct t
:in-theory (disable 4v-sexpr-restrict-4v-sexpr-restrict))))
(defthm 4v-sexpr-fixpoint-lower-boundp2-4v-sexpr-fixpoint-spec
(implies (no-duplicatesp-equal (alist-keys update-fns))
(4v-sexpr-fixpoint-lower-boundp2
update-fns
(4v-sexpr-fixpoint-spec update-fns))))
;; (defthm 4v-sexpr-fixpoint-lower-boundp-4v-sexpr-fixpoint-spec
;; (implies (no-duplicatesp-equal (alist-keys update-fns))
;; (4v-sexpr-fixpoint-lower-boundp
;; update-fns
;; (4v-sexpr-fixpoint-spec update-fns)))
;; :hints (("goal" :induct (4v-sexpr-fixpoint-spec update-fns)
;; :in-theory (e/d (alist-keys
;; 4v-alist-<=-acons->remove
;; 4v-alist-<=-trans2)
;; (4v-sexpr-restrict-alist
;; 4v-sexpr-eval
;; 4v-sexpr-restrict
;; 4v-alist-<=-acons-1
;; default-car default-cdr
;; keys-equiv-when-alist-keys
;; subsetp-car-member
;; member-equal
;; 4v-fix 4v-<=))
;; :do-not-induct t)
;; (witness :ruleset 4v-sexpr-fixpoint-lower-boundp-witnessing)
;; (and stable-under-simplificationp
;; '(:use ((:instance 4v-sexpr-fixpoint-lower-boundp-necc
;; (ups (cdr update-fns))
;; (fp (remove-assoc-hons (caar update-fns) fp0))
;; (env (cons (cons (caar update-fns)
;; (cdr (hons-assoc-equal
;; (caar update-fns)
;; fp0)))
;; env0))
;; (lb (4v-sexpr-fixpoint-spec
;; (cdr update-fns))))))))
;; :otf-flg t)
;; (defthmd 4v-sexpr-fixpointp-iff-4v-sexpr-alist-equiv
;; (implies (keys-equiv ups fixpoint)
;; (iff (4v-sexpr-fixpointp ups fixpoint)
;; (4v-sexpr-alist-equiv (4v-sexpr-restrict-alist ups fixpoint)
;; fixpoint)))
;; :hints(("Goal" :in-theory (enable 4v-sexpr-alist-equiv-fixpoint)
;; :do-not-induct t)
;; (witness :ruleset (4v-sexpr-fixpointp-witnessing
;; 4v-sexpr-alist-equiv-example))))
|