1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
; S-Expressions for 4-Valued Logic
; Copyright (C) 2010-2012 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Sol Swords <sswords@centtech.com>
;
; sexpr-fixpoint.lisp
; - core fixpoint algorithm for monotonic, lattice-height-1 sexpr objects
(in-package "ACL2")
(include-book "nsexprs")
(include-book "sexpr-rewrites")
(include-book "centaur/misc/hons-extra" :dir :system)
(include-book "centaur/misc/sneaky-load" :dir :system)
(include-book "centaur/misc/nat-list-duplicates" :dir :system)
(include-book "centaur/misc/tuplep" :dir :system)
(include-book "centaur/misc/dfs-measure" :dir :system)
(include-book "std/basic/two-nats-measure" :dir :system)
(include-book "centaur/vl/util/cwtime" :dir :system)
(local (include-book "arithmetic/top-with-meta" :dir :system))
(local (in-theory (disable set::double-containment)))
;; BOZO library stuff -----------------------------------------------
(defun redundant-append (a b)
;; bozo name is weird -- maybe "smart-append" instead?
;; bozo actually also redundant with faig-least-fixpoint.lisp ... /smacks head
(declare (xargs :guard (true-listp a)))
(mbe :logic (append a b)
:exec (if b
(append a b)
a)))
(defun reverse-alist (x)
(declare (xargs :guard t))
(cond ((atom x)
nil)
((atom (car x))
(reverse-alist (cdr x)))
(t
(cons (cons (cdar x) (caar x))
(reverse-alist (cdr x))))))
(defun collect-keys-with-value (x val)
(declare (xargs :guard t))
(cond ((atom x)
nil)
((atom (car x))
(collect-keys-with-value (cdr x) val))
((equal (cdar x) val)
(cons (caar x)
(collect-keys-with-value (cdr x) val)))
(t
(collect-keys-with-value (cdr x) val))))
; probably localize these theorems or integrate them into libraries
(defthm true-listp-hons-shrink-alist
(iff (true-listp (hons-shrink-alist a b))
(true-listp b)))
; ----------------- end library stuff ----------------------------
; Sneaky Loop Debugging
;
; SEXPR-FIXPOINTS can perform poorly when there are apparent combinational
; loops. Unfortunately, it can be very difficult to figure out where the loops
; are being encountered. To assist with debugging these loops, we now
; automatically detect and print information about the looping signals.
;
; To avoid complicating the logical story by passing around inv-varmap and the
; loops we've found, we use the sneaky-load stuff for this. Our real debugging
; code abuses sneaky-mutate to use it to print our debugging info. But we
; won't install our debugging by default, so that this file doesn't need to
; depend on elaborate VL stuff that we use to make the debugger better. See
; sexpr-loop-debug.lisp for the real debugger.
(defstub sneaky-loop-debugger () t)
(defstub sneaky-loop-say-how-bad (sig-number ndeps) t)
(defun default-sneaky-loop-debugger ()
(declare (xargs :guard t))
nil)
(defun default-sneaky-loop-say-how-bad (sig-number ndeps)
(declare (xargs :guard t)
(ignorable sig-number ndeps))
(progn$
(cw "Note: signal ~x0 depends on ~x1 previous signals.~%" sig-number ndeps)
(cw "Consider installnig the loop-debugger.~%")
nil))
(defattach sneaky-loop-debugger default-sneaky-loop-debugger)
(defattach sneaky-loop-say-how-bad default-sneaky-loop-say-how-bad)
; The fixpoint algorithm is adapted from faig-least-fixpoint.lisp. We leave
; the semantics uninterpreted for now.
;
; The top-level function is:
;
; (SEXPR-FIXPOINT-WITH-VARMAP UPDATE-FNS VARMAP)
;
; Here,
;
; UPDATE-FNS is an alist binding some signal names (atoms) to s-expressions
; representing their update functions.
;
; VARMAP is a 1-1 mapping from singal names to natural numbers. It must
; provide a binding for every key in the update-fns alist, and also for any
; variables mentioned in any s-expression in the update-fns alist.
;
; We produce a new alist where every variable in UPDATE-FNS is bound to an
; S-Expression that represents its value after running all of the update
; functions until a fixed point is reached.
;
; The point of the VARMAP is to provide a translation from S-Expressions that
; involve arbitrary variables to S-Expressions that only involve natural-number
; variables. We can compute the 4v-sexpr-vars of these "nat var sexprs" much more
; efficiently than for regular sexprs; see nat-var-sexprs.lisp for details.
;
; Indeed, our top-level function is nothing more than a wrapper which:
;
; (1) rewrites the UPDATE-FNS using the VARMAP, producing some
; NAT-UPDATE-FNS where all the signal names are natural numbers
;
; (2) applies an auxilliary function to these NAT-UPDATE-FNS, which computes
; all of the fixpoints in terms of these numbered variables.
;
; (3) rewrites the resulting fixpoints using the inverse of VARMAP in order
; to get fixpoint functions that are in terms of the original variables.
;
; Each rewriting pass is only O(n) in the size of the update-fns, and as such
; is relatively cheap.
;
;
; From now on, suppose we are working with natural variabled UPDATE-FNS. The
; auxilliary function in step 2 can also be regarded as our top-level function
; for finding fixpoints of these kinds of update-fns, and is:
;
; (SEXPR-FIXPOINTS UPDATE-FNS)
;
; It returns a new alist that binds the signal names to their final
; S-Expressions. This function also operates in two phases:
;
; (1) we try to topologically sort the update functions into a good order
; that will minimize the number of backward-propagations needed in the
; core algorithm, then
;
; (2) we apply our core algorithm to the reordered update functions.
;
; The sorting phase is carried out by SEXPR-DFS, which (BOZO which presumably
; stands for "depth first search" or "depth first sort") and is not
; particularly tricky.
;
;
; The real core of the algorithm is:
;
; (FIND-SEXPR-LEAST-FIXPOINT UPDATE-FNS)
; --->
; (MV FIXPOINTS NEED-FIXING DEPTABLE)
(defconst *sexpr-fixpoint-rewrite* t)
(defun sexpr-update-fixpoints (deps fixpoints new-fixpoint)
(declare (xargs :guard t))
(if (atom deps)
fixpoints
(let ((look (hons-get (car deps) fixpoints)))
(if look
(hons-acons (car deps)
(if *sexpr-fixpoint-rewrite*
(4v-sexpr-restrict-with-rw (cdr look) new-fixpoint)
(4v-sexpr-restrict (cdr look)
new-fixpoint))
(sexpr-update-fixpoints (cdr deps) fixpoints
new-fixpoint))
(sexpr-update-fixpoints (cdr deps) fixpoints
new-fixpoint)))))
(defun update-deptable (vars deps deptable)
;; forall v in vars, deptable[v] := deps @ deptable[v]
(declare (xargs :guard (true-listp deps)))
(if (atom vars)
deptable
(hons-acons (car vars)
(redundant-append deps (cdr (hons-get (car vars) deptable)))
(update-deptable (cdr vars) deps deptable))))
(defun sexpr-fixpoint-forward-propagate (sexpr fixpoints)
;; Composes the previously-computed fixpoints into an update function
;; (sexpr).
(declare (xargs :guard t))
(if *sexpr-fixpoint-rewrite*
(4v-sexpr-restrict-with-rw sexpr fixpoints)
(4v-sexpr-restrict sexpr fixpoints)))
(encapsulate nil
(defthm 4v-sexpr-restrict-with-rw-vars-subset
(subsetp-equal (4v-sexpr-vars (4v-sexpr-restrict-with-rw x al))
(append (4v-sexpr-vars-list (alist-vals al))
(set-difference-equal (4v-sexpr-vars x)
(alist-keys al))))
:hints ((witness)))
(local (defthm nat-listp-append-iff
(implies (true-listp a)
(iff (nat-listp (append a b))
(and (nat-listp a)
(nat-listp b))))
:hints(("Goal" :in-theory (enable nat-listp)))))
(defthm nat-listp-4v-sexpr-vars-list-alist-vals-when-4v-nsexpr-alist-p
(implies (4v-nsexpr-alist-p al)
(nat-listp (4v-sexpr-vars-list (alist-vals al))))
:hints(("Goal" :in-theory (enable nat-listp alist-vals 4v-sexpr-vars-list))))
(local (defthm nat-listp-set-differenc-equal
(implies (nat-listp x)
(nat-listp (set-difference-equal x y)))
:hints(("Goal" :in-theory (enable nat-listp set-difference-equal)))))
;; BOZO wtf where did nat-listp-subset go?
(local (defthm natp-when-nat-listp-member
(implies (and (member a x)
(nat-listp x))
(natp a))
:hints(("Goal" :in-theory (enable nat-listp)))))
(local (defthm nat-listp-when-subsetp
(implies (and (subsetp-equal x y)
(nat-listp y))
(equal (nat-listp x)
(true-listp x)))
:hints(("Goal" :induct (len x)
:in-theory (enable subsetp-equal nat-listp)))))
(defthm 4v-nsexpr-p-sexpr-rewrite
(implies (and (4v-nsexpr-p x)
(4v-nsexpr-alist-p al))
(nat-listp (4v-sexpr-vars (4v-sexpr-restrict-with-rw x al))))
:hints (("goal" :use ((:instance nat-listp-when-subsetp
(x (4v-sexpr-vars (4v-sexpr-restrict-with-rw x al)))
(y (append (4v-sexpr-vars-list (alist-vals al))
(set-difference-equal (4v-sexpr-vars x)
(alist-keys al))))))))))
(defun find-sexpr-least-fixpoint (update-fns)
(declare (xargs :guard (4v-nsexpr-alist-p update-fns)
:verify-guards nil))
; The update-fns have already been ordered.
;
; Returns (mv fixpoints need-fixing deptable)
;
; fixpoints: alist mapping signal names to their SEXPR fixpoints. each SEXPR
; may contain varnames for signals that occur previously to it in
; update-fns.
;
; need-fixing: list of signals that still need to be Xed out.
;
; deptable: table mapping signal names to lists of signal names.
;
; Invariant: If some signal S in the fixpoints depends on D, then
; S \in deptable[D]
(if (atom update-fns)
(mv nil nil nil)
(b* (((mv fixpoints need-fixing deptable)
(find-sexpr-least-fixpoint (cdr update-fns)))
((when (not (mbt (consp (car update-fns)))))
(mv fixpoints need-fixing deptable))
(signame (caar update-fns))
(sexpr (cdar update-fns))
;; Composing the previously-computed fixpoints into the update
;; function.
(fixpoint
(sexpr-fixpoint-forward-propagate sexpr fixpoints))
(-
;; BOZO is this a good idea? Probably.
(clear-memoize-table (if *sexpr-fixpoint-rewrite*
'4v-sexpr-restrict-with-rw
'4v-sexpr-restrict)))
;; Signals upon which signame depends.
(compose-vars
(4v-nsexpr-vars fixpoint))
;; (my-4v-sexpr-vars fixpoint)
;; If signame depends on itself (after composing in the previous
;; fixpoints), then it will need to be set to X throughout the
;; fixpoints, in a final pass later. We track such signals in
;; needs-fixing.
(needs-fixingp
(mbe :logic (member-equal signame compose-vars)
:exec (if (integerp signame)
(member signame compose-vars)
(member-equal signame compose-vars))))
;; Get from deptable the list of signals whose fixpoints we've already
;; computed that depend on our vars.
(deps
(hons-remove-duplicates (cdr (hons-get signame deptable))))
(- (and deps
(sneaky-loop-say-how-bad signame (len deps))))
; BOZO we could skip this work when deps are empty, which most of the time
; they are.
;; Back propagation: For each such dependency, replace the on/off var
;; with its fixpoint formula. Now, no fixpoint contains either of our
;; on/offset variables.
(restr-al3 (make-fast-alist `((,signame . ,fixpoint))))
(new-fixpoints (sexpr-update-fixpoints deps fixpoints restr-al3))
(- (fast-alist-free restr-al3))
(-
;; BOZO is this a good idea?
(clear-memoize-table (if *sexpr-fixpoint-rewrite*
'4v-sexpr-restrict-with-rw
'4v-sexpr-restrict)))
;; Update the dependency table: Each variable in this signal's
;; fixpoint needs its dependencies updated to include this signal and
;; all previous fixpoints that depend on it, since back-propagation
;; likely added all this signal's variables to those fixpoints.
(deptable (update-deptable compose-vars (cons signame deps) deptable)))
(mv (hons-acons signame fixpoint new-fixpoints)
(if needs-fixingp
(cons signame need-fixing)
need-fixing)
deptable))))
(defthm 4v-nsexpr-alist-p-sexpr-update-fixpoints
(implies (and (4v-nsexpr-alist-p fixpoints)
(4v-nsexpr-alist-p new-fixpoint))
(4v-nsexpr-alist-p (sexpr-update-fixpoints deps fixpoints new-fixpoint))))
(defthm 4v-nsexpr-alist-p-find-sexpr-least-fixpoint
(implies (4v-nsexpr-alist-p update-fns)
(4v-nsexpr-alist-p (mv-nth 0 (find-sexpr-least-fixpoint
update-fns))))
:hints(("Goal" :in-theory (disable hons-assoc-equal
sexpr-rewrite))))
(verify-guards find-sexpr-least-fixpoint)
;; To find the series of signals in a loop, run back through the seen alist
;; collecting signals that are recorded as started but not finished until we
;; reach the starting point of the signal in question.
(defun trace-loop (signal seen-al whole-seen-al acc)
(declare (xargs :guard t))
(b* (((when (atom seen-al))
(er hard? 'trace-loop "Didn't find signal in seen-al.~%"))
((when (or (atom (car seen-al))
(not (eq (cdar seen-al) 'started))
(eq (cdr (hons-get (caar seen-al) whole-seen-al))
'finished)))
(trace-loop signal (cdr seen-al) whole-seen-al acc))
(acc (cons (caar seen-al) acc))
((when (equal (caar seen-al) signal)) acc))
(trace-loop signal (cdr seen-al) whole-seen-al acc)))
(defun sexpr-dfs (queue deps seen-al parent back-edges)
; Returns the final (MV SEEN-AL BACK-EDGES)
; QUEUE is the nodes we have left to explore; initially the names of all
; update-fns.
;
; DEPS is the alist mapping wires to the variables of their update functions.
;
; SEEN-AL is an fast alist:
; - unvisited nodes are not bound yet
; - nodes are bound to 'started as we begin exploring their dependencies
; - nodes are bound to 'finished after we're done exploring their dependencies
;
; PARENT is (LIST NODE) if we are currently looking at some node's dependents,
; or is NIL otherwise.
;
; BACK-EDGES is an ordinary alist that will record all loops we encounter.
; That is, if we wind up trying to explore a node that has already been
; 'started but not 'finished, then we record (parent-node . this-node) in the
; back-edges alist.
;
; BOZO back-edges is not actually used for anything, maybe we shouldn't bother
; to construct it.
(declare (xargs :well-founded-relation nat-list-<
:measure (dfs-measure queue deps seen-al)
:hints (("goal" :do-not-induct t))
:guard t
:verify-guards nil))
(b* (((when (atom queue)) (mv seen-al back-edges))
(node (car queue))
((when (hons-get node seen-al))
;; Already saw the node. Don't add anything to the seen-al. If the
;; node has already been 'finished, we can just skip it. If it's only
;; been 'started, we're in a loop, so record the back edge.
(b* ((back-edges
(if (and (consp parent)
(eq (cdr (hons-get node seen-al)) 'started))
(prog2$ (sneaky-push :sexpr-loop-debug-loops
(trace-loop node seen-al seen-al nil))
(cons (cons (car parent) node) back-edges))
back-edges)))
(sexpr-dfs (cdr queue) deps seen-al parent back-edges)))
;; First time we've seen this node. Compute its dependents.
(look (hons-get node deps))
((when (not look))
;; Basically a degenerate case -- should never occur unless we're
;; missing a binding for some signal that occurs as the rhs of some
;; update-fn.
(sexpr-dfs (cdr queue) deps seen-al parent back-edges))
(node-deps (cdr look))
;; Mark the node as started and go explore its dependents.
(seen-al1 (hons-acons node 'started seen-al))
((mv seen-al1 back-edges)
(sexpr-dfs node-deps deps seen-al1 (list node) back-edges))
;; Done exploring dependents, so mark the node as finished.
(seen-al2 (hons-acons node 'finished seen-al1))
((when (not (mbt (suffixp seen-al seen-al2))))
(mv seen-al1 back-edges)))
(sexpr-dfs (cdr queue) deps seen-al2 parent back-edges)))
(defthm suffixp-sexpr-dfs
(suffixp seen-al (mv-nth 0 (sexpr-dfs queue deptable seen-al parent
back-edges)))
:hints (("goal" :induct (sexpr-dfs queue deptable seen-al parent
back-edges))))
(defthm suffixp-sexpr-dfs-cons
(suffixp seen-al (mv-nth 0 (sexpr-dfs queue deptable (cons x seen-al) parent
back-edges)))
:hints(("Goal" :use (:instance suffixp-transitive
(a seen-al)
(b (cons x seen-al))
(c (mv-nth 0 (sexpr-dfs queue deptable (cons x seen-al) parent
back-edges))))
:in-theory (disable suffixp-transitive))))
(verify-guards sexpr-dfs)
(defthm sexpr-hons-assoc-equal-in-seen-al
(implies (hons-assoc-equal k seen-al)
(hons-assoc-equal k (mv-nth 0 (sexpr-dfs queue deptable
seen-al parent
back-edges))))
:hints (("goal" :induct (sexpr-dfs queue deptable
seen-al parent
back-edges)
:in-theory (disable (:definition sexpr-dfs))
:expand ((sexpr-dfs queue deptable
seen-al parent
back-edges)))))
(defthm sexpr-subsetp-equal-alist-keys-seen-al
(subsetp-equal (alist-keys seen-al)
(alist-keys (mv-nth 0 (sexpr-dfs queue
deptable
(cons (cons key 'started)
seen-al)
parent
back-edges))))
:hints (("goal" :do-not-induct t
:in-theory (enable subsetp-witness-rw))))
(defun sexpr-x-out-fixpoint-sigs (need-fixing fixpoints)
(declare (xargs :guard t))
(if need-fixing
(b* ((x-alist (hons-acons-each need-fixing *4vx-sexpr* nil))
(fixpoints (if *sexpr-fixpoint-rewrite*
(4v-sexpr-restrict-with-rw-alist fixpoints x-alist)
(4v-sexpr-restrict-alist fixpoints x-alist))))
(clear-memoize-table (if *sexpr-fixpoint-rewrite*
'4v-sexpr-restrict-with-rw
'4v-sexpr-restrict))
(fast-alist-free x-alist)
fixpoints)
fixpoints))
(defun find-sexpr-least-fixpoint-top (ordered-updates)
(declare (xargs :guard (4v-nsexpr-alist-p ordered-updates)))
(b* (((mv fixpoint needs-fixing deptable)
(find-sexpr-least-fixpoint ordered-updates))
(fixpoint1 (hons-shrink-alist fixpoint nil))
(- (fast-alist-free fixpoint)
(fast-alist-free fixpoint1)
(fast-alist-free deptable))
(fixpoint (sexpr-x-out-fixpoint-sigs
needs-fixing fixpoint1)))
fixpoint))
(defun sexpr-update-fns-to-deps (x)
(declare (Xargs :guard (4v-nsexpr-alist-p x)))
(if (atom x)
nil
(if (atom (car x))
(sexpr-update-fns-to-deps (cdr x))
(cons (cons (caar x) (4v-nsexpr-vars (cdar x)))
(sexpr-update-fns-to-deps (cdr x))))))
(defun sexpr-fixpoints (update-fns)
(declare (xargs :guard (4v-nsexpr-alist-p update-fns)))
(b* ((deptable (sexpr-update-fns-to-deps update-fns))
((with-fast deptable update-fns))
;; Clear out the sexpr-dfs-loops accumulator so that we are not saving
;; any previous loops.
(- (sneaky-save :sexpr-dfs-loops nil))
;; Depth-first search to try to put the update-fns into a good order
;; that will minimize back-propagation.
((mv dfs ?back-edges)
(cwtime (sexpr-dfs (alist-keys update-fns)
deptable nil nil nil)
:mintime 1))
(- (sneaky-loop-debugger))
(order (collect-keys-with-value dfs 'finished))
(ordered-updates (fal-extract order update-fns))
(- (fast-alist-free dfs))
;; Run the real fixpoint algorithm on the reordered update-fns.
(fixpoint
(find-sexpr-least-fixpoint-top ordered-updates)))
(clear-memoize-table 'sexpr-rewrite)
(clear-memoize-table '4v-nsexpr-vars-sparse)
(clear-memoize-table '4v-nsexpr-vars-nonsparse)
fixpoint))
(defun nat-val-alistp (x)
;; Alist whose every value is a natp.
(declare (xargs :guard t))
(if (atom x)
t
(and (consp (car x))
(natp (cdar x))
(nat-val-alistp (cdr x)))))
(defun translate-domain (al map)
;; Replace the keys of AL with their bindings in MAP. We're just rewriting
;; the keys of the UPDATE-FNS alist with the VARMAP, here.
(declare (xargs :guard t))
(b* (((when (atom al)) nil)
((when (atom (car al)))
(translate-domain (cdr al) map))
(look (hons-get (caar al) map))
((when (not look))
(translate-domain (cdr al) map)))
(cons (cons (cdr look) (cdar al))
(translate-domain (cdr al) map))))
(defthm 4v-nsexpr-alist-p-translate-domain
(implies (4v-nsexpr-alist-p x)
(4v-nsexpr-alist-p (translate-domain x al))))
(defun unique-mapping (x)
(declare (xargs :guard t))
(and (no-duplicatesp-equal (alist-keys x))
(no-duplicatesp-equal (alist-vals x))))
(defun sexpr-var-key-alistp (x)
;; Alist whose every key is an non-nil atom
(declare (xargs :guard t))
(if (atom x)
t
(and (consp (car x))
(atom (caar x))
(caar x)
(sexpr-var-key-alistp (cdr x)))))
(defun sexpr-var-val-alistp (x)
;; Alist whose every value is an non-nil atom
(Declare (xargs :guard t))
(if (atom x)
t
(and (consp (car x))
(atom (cdar x))
(cdar x)
(sexpr-var-val-alistp (cdr x)))))
(defun good-sexpr-varmap (map ups)
(declare (xargs :guard t))
(and (sexpr-var-key-alistp map)
(sexpr-var-val-alistp map)
(unique-mapping map)
(subsetp-equal (alist-keys ups) (alist-keys map))
(subsetp-equal (4v-sexpr-vars-list (alist-vals ups))
(alist-keys map))))
(defun sexpr-fixpoint-with-varmap (update-fns varmap)
(declare (xargs :guard (and (4v-nsexpr-alist-p varmap)
(good-sexpr-varmap varmap update-fns))))
(if (mbt (good-sexpr-varmap varmap update-fns))
(b* ((varmap (make-fast-alist varmap))
(nat-update-fns (translate-domain
;; We don't bother rewriting here because
;; the alist simply maps vars to vars.
(4v-sexpr-compose-alist
update-fns varmap) varmap))
(- (clear-memoize-table '4v-sexpr-compose))
(inv-varmap (make-fast-alist (reverse-alist varmap)))
;; Clear out any previously saved loops. Install the new inv-varmap
;; so that we can translate loops we find.
(- (sneaky-save :sexpr-loop-debug-loops nil))
(- (sneaky-save :sexpr-loop-debug-inv-varmap inv-varmap))
(nat-fixpoint (sexpr-fixpoints nat-update-fns))
(fixpoint (translate-domain
(4v-sexpr-compose-alist
nat-fixpoint inv-varmap) inv-varmap)))
(clear-memoize-table '4v-sexpr-compose)
(fast-alist-free varmap)
(fast-alist-free inv-varmap)
fixpoint)
(sexpr-fixpoints update-fns)))
(memoize 'sexpr-fixpoint-with-varmap :condition nil)
(memoize 'sexpr-fixpoints :condition nil)
(defthm true-listp-sexpr-fixpoints
;; bozo really want rewrite??
(true-listp (sexpr-fixpoints ups))
:hints(("Goal" :in-theory (enable sexpr-fixpoints)))
:rule-classes (:rewrite :type-prescription))
(defthm true-listp-sexpr-fixpoint-with-varmap
(true-listp (sexpr-fixpoint-with-varmap ups map))
:hints(("Goal" :in-theory (e/d (sexpr-fixpoint-with-varmap)
(hons-assoc-equal))))
:rule-classes :type-prescription)
;; Jared: this doesn't seem to be used now.
;; (defun sexpr-single-fixpoint (name sexpr vars)
;; (if (member-equal name vars)
;; (b* ((restr-al2 (make-fast-alist `((,name ,*4vx-sexpr*))))
;; (fixpoint (4v-sexpr-restrict sexpr restr-al2))
;; (- (fast-alist-free restr-al2)))
;; fixpoint)
;; sexpr))
|