1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
|
; Centaur AIG Library
; Copyright (C) 2008-2011 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Sol Swords <sswords@centtech.com>
; This file contains the algorithm for converting an AIG into a BDD
; given a size limitation for the BDDs produced during this processs.
; In this file there are also a few notes that relate to a paper
; describing some aspects of this development. We make a note of
; such with a comment that starts a line like the line just below:
;!PAPER-NOTE:
(in-package "ACL2")
(include-book "aig-base")
(include-book "faig-base")
(include-book "std/util/bstar" :dir :system)
(include-book "tools/mv-nth" :dir :system)
(include-book "tools/include-raw" :dir :system)
(include-book "misc/hons-help2" :dir :system)
(include-book "centaur/ubdds/extra-operations" :dir :system)
(include-book "centaur/misc/memory-mgmt-logic" :dir :system)
(defxdoc bddify
:parents (aig)
:short "An verified algorithm for converting @(see aig)s into @(see ubdds)."
:long "<p>The @('bddify') algorithm can convert AIGs into BDDs. This can be
used, for instance, to solve satisfiability problems without reaching out to an
external SAT solver.</p>
<p>The algorithm uses two methods to simplify an input AIG using BDDs of
limited size; it repeatedly applies these methods while varying the BDD size
limit. One method is similar to dynamic weakening in that it replaces oversized
BDDs by a conservative approximation; the other method introduces fresh
variables to represent oversized BDDs.</p>
<p>While we have not documented the algorithm with @(see xdoc), a description
of its operation and verification can be found in:</p>
<box>
<p>Sol Swords and Warren A. Hunt, Jr. <a
href='http://dx.doi.org/10.1007/978-3-642-14052-5_30'>A Mechanically Verified
AIG to BDD Conversion Algorithm</a>. In ITP 2010. Springer LNCS 6172, pages
435-449.</p>
</box>
<p><a
href='https://www.cs.utexas.edu/users/kaufmann/itp-2010/session6/swords-itp.pdf'>Slides</a>
from the ITP presentation are also available.</p>")
;; AIG-Q-COMPOSE builds a BDD from an AIG; each AIG variable must be
;; mapped to a BDD in the alist argument or it will be assigned the
;; value NIL. Naive method: not to be used for real problems.
;!PAPER-NOTE: this function called A2B.
(defn aig-q-compose (x fal)
(aig-cases
x
:true t
:false nil
:var (aig-alist-lookup x fal)
:inv (q-not (aig-q-compose (car x) fal))
:and (let ((a (aig-q-compose (car x) fal)))
(and a (q-and a (aig-q-compose (cdr x) fal))))))
(defn bdd-eval-alst (al vals)
(if (atom al)
nil
(if (consp (car al))
(cons (cons (caar al)
(eval-bdd (cdar al) vals))
(bdd-eval-alst (cdr al) vals))
(bdd-eval-alst (cdr al) vals))))
(defthm hons-assoc-equal-commutes-bdd-eval-alist-to-eval-bdd
(equal (cdr (hons-assoc-equal x (bdd-eval-alst al vars)))
(eval-bdd (cdr (hons-assoc-equal x al)) vars)))
(defthm bdd-eval-alst-hons-assoc-equal-iff
(iff (hons-assoc-equal x (bdd-eval-alst al vals))
(hons-assoc-equal x al)))
(defthm aig-q-compose-correct
(equal (eval-bdd (aig-q-compose x al) vals)
(aig-eval x (bdd-eval-alst al vals))))
(add-bdd-fn 'aig-q-compose)
(defn faig-q-compose-pat (pat fpat fal)
(if pat
(if (atom pat)
(hons (aig-q-compose (ec-call (car fpat)) fal)
(aig-q-compose (ec-call (cdr fpat)) fal))
(cons (faig-q-compose-pat (car pat) (ec-call (car fpat)) fal)
(faig-q-compose-pat (cdr pat) (ec-call (cdr fpat)) fal)))
nil))
(defn faig-q-compose-list (lst fal)
(if (atom lst)
nil
(cons (cons (aig-q-compose (ec-call (car (car lst))) fal)
(aig-q-compose (ec-call (cdr (car lst))) fal))
(faig-q-compose-list (cdr lst) fal))))
(defn aig-q-compose-list (lst fal)
(if (atom lst)
nil
(cons (aig-q-compose (car lst) fal)
(aig-q-compose-list (cdr lst) fal))))
(memoize 'aig-q-compose :condition '(consp x))
; COUNT-BDD-BRANCHES may be obsolete...
(defun count-bdd-branches (x n acc)
(declare (xargs :guard (integerp n)
:verify-guards nil))
(cond ((atom x) (mv n acc))
((hons-get x acc) (mv n acc))
((hqual (car x) (cdr x))
(count-bdd-branches (car x) n (hut x t acc)))
((<= n 0) (mv nil acc))
(t (mv-let (n acc)
(count-bdd-branches (cdr x) (1- n) (hut x t acc))
(if n
(count-bdd-branches (car x) n acc)
(mv n acc))))))
(defthm integerp-count-bdd-branches-0
(implies (and (integerp n)
(mv-nth 0 (count-bdd-branches x n acc)))
(integerp (mv-nth 0 (count-bdd-branches x n acc)))))
(verify-guards count-bdd-branches)
(defn count-branches-to (x n)
; This has an under-the-hood definition (see the ttag below) to increase its
; performance. It's only used heuristically, so even if it returns the wrong
; answer we're okay logically as far as the aig-bddify functions. However, we
; of course need to trust that the under-the-hood definition doesn't mess up
; the memory somehow.
;!paper-note: Specifically mentioned in the paper.
(declare (xargs :guard-hints
(("goal"
:in-theory
(disable count-bdd-branches integerp-count-bdd-branches-0)
:use ((:instance integerp-count-bdd-branches-0
(n (nfix n))
(acc 'number-bdd-branches)))))))
(mv-let (rem acc)
(count-bdd-branches x (nfix n) 'number-bdd-branches)
(ansfl (if rem (- (nfix n) rem) nil)
acc)))
(defttag count-branches-to)
;; (depends-on "count-branches-fast.lsp")
(include-raw "count-branches-fast.lsp")
(defttag nil)
(defthm integerp-count-bdd-branches-to
(implies (and (integerp n)
(count-branches-to x n))
(integerp (count-branches-to x n)))
:hints (("goal"
:in-theory
(disable count-bdd-branches integerp-count-bdd-branches-0)
:use ((:instance integerp-count-bdd-branches-0
(n (nfix n))
(acc 'number-bdd-branches))))))
(in-theory (disable count-branches-to))
;; Set this to NIL to disable warnings about missing bindings.
(defconst *aig-bddify-warn-missing-binding* t)
;; AIG-BDDIFY-X-WEAKENING tries to simplify an AIG and produce its BDD
;; representation given an alist mapping AIG variables to BDDs. It uses a
;; weakening strategy that effectively replaces too-large BDDs by Xes (in our
;; implementation we use upper and lower bounds instead of onset and offset,
;; but the outcome is the same.) using BDDs and keeping track of upper
;; and lower bounds. If the upper and lower bounds are equal, then this is the
;; exact BDD representation of the AIG.
;; Given HI and LO bdds from two subtrees, AND them together, simplifying in
;; the cases where one subtree is redundant. Return the new HI and LO bdds,
;; the new simplified AIG, and upper bounds on the BDD sizes
;; (i.e. number-subtrees+1.)
(defn merge-hi-lo (hi1 hi2 lo1 lo2 a1 a2 hc1 hc2 lc1 lc2)
(declare (xargs :guard (and (integerp hc1) (integerp hc2)
(integerp lc1) (integerp lc2))))
;; Concept!!! Checking to see whether an AND is really equal to one
;; of the conjuncts.
(cond ((hqual hi1 (q-and hi1 lo2))
(mv hi1 lo1 a1 hc1 lc1))
((hqual hi2 (q-and hi2 lo1))
(mv hi2 lo2 a2 hc2 lc2))
(t (mv (q-and hi1 hi2)
(q-and lo1 lo2)
(aig-and a1 a2)
(* hc1 hc2)
(* lc1 lc2)))))
;; Compare a calculated upper bound on a BDD node count to a threshold. If the
;; upper bound is greater, find the actual count using number-subtrees. If that
;; is okay, keep the BDD and return the new node count; otherwise, return a
;; default value, which should be a Boolean.
(defun prune-by-count (b cnt max-nodes default)
;; Checking a result BDD to see whether it's too large.
(if (<= cnt max-nodes)
(mv b cnt)
(let* ((cnt (count-branches-to b max-nodes))
(cnt (and cnt (1+ cnt))))
(if (and cnt (<= cnt max-nodes))
(mv b cnt)
;; Prune less aggressively?
(mv default 1)))))
;; Given upper and lower bound BDDs, simplified AIGs, and node-count bounds for
;; each BDD of two subtrees, produce the same for the AND of the two subtrees.
(defun and-bddify-x-weakening (hi1 hi2 lo1 lo2 a1 a2 hc1 hc2 lc1 lc2 max-nodes)
(b* (((mv hi lo a hc lc)
(merge-hi-lo hi1 hi2 lo1 lo2 a1 a2 hc1 hc2 lc1 lc2)))
(if (or (and (eq hi t) (eq lo t))
(and (eq hi nil) (eq lo nil)))
(mv hi hi hi 1 1)
(b* (((mv hi hc)
(prune-by-count hi hc max-nodes t))
((mv lo lc)
(prune-by-count lo lc max-nodes nil)))
(mv hi lo a hc lc)))))
(defun apqs-memo-lookup (x fmemo memo)
(let ((m (hons-get x fmemo)))
(if m
(b* (((list* bdd a count) (cdr m)))
(mv t bdd bdd a count count))
(let ((m (hons-get x memo)))
(if m
(b* (((list* hi lo a hc lc) (cdr m)))
(mv t hi lo a hc lc))
(mv nil nil nil nil nil nil))))))
(defun apqs-memo-cache (x hi lo a hc lc fmemo memo)
(if (hqual hi lo)
(mv (hut x (list* hi a hc)
(if (hons-get a fmemo)
fmemo
(hut a (list* hi a hc) fmemo)))
memo)
(mv fmemo (hut x (list* hi lo a hc lc) memo))))
(defun apqs-memo-lookup-aig (x fmemo memo)
;; for visibility -- map x to its new version in fmemo or memo
(let ((m (hons-get x fmemo)))
(if m
(mv t (third m))
(let ((m (hons-get x memo)))
(if m
(mv t (fourth m))
(mv nil nil))))))
;!paper-note: AIG-BDDIFY-X-WEAKENING is called BOUND-METHOD.
;; Six return values:
;; - an upper bound on the logical value of x under BDD substitution AL
;; - a lower bound
;; - a simplified version of x, which is equivalent to x under AL
;; - an upper bound on the size of the upper bound BDD
;; - a lower bound on the size of the lower bound BDD
;; - fmemo: final memoized results
;; - memo: memoized results for this max-nodes level
(defun aig-bddify-x-weakening (x al max-nodes fmemo memo)
;; Concept !!!
;; In this function, when we see a BDD that's too big, we replace it
;; by T (if it's an upper bound) or NIL (if it's a lower bound.) So
;; we lose all in formation about that particular result.
;; The proof of correctness is in "aig-lemmas.lisp".
(aig-cases
x
:true (mv t t t 1 1 fmemo memo)
:false (mv nil nil nil 1 1 fmemo memo)
:var (b* ((val (aig-alist-lookup x al))
(count (count-branches-to val max-nodes))
(count (and count (1+ count))))
(if count
(if (booleanp val)
(mv val val val count count fmemo memo)
(mv val val x count count fmemo memo))
(mv t nil x 1 1 fmemo memo)))
:inv (b* (((mv hi lo a hc lc fmemo memo)
(aig-bddify-x-weakening (car x) al max-nodes fmemo memo)))
(mv (q-not lo) (q-not hi) (aig-not a) lc hc fmemo memo))
:and (b* (((mv ok hi lo a hc lc)
(apqs-memo-lookup x fmemo memo)))
(if ok
(mv hi lo a hc lc fmemo memo)
(b* (((mv hi1 lo1 a1 hc1 lc1 fmemo memo)
(aig-bddify-x-weakening (car x) al max-nodes fmemo memo)))
(if (and (eq hi1 nil) (eq lo1 nil))
(mv nil nil nil 1 1 fmemo memo)
(b* (((mv hi2 lo2 a2 hc2 lc2 fmemo memo)
(aig-bddify-x-weakening (cdr x) al max-nodes fmemo memo))
((mv hi lo a hc lc)
(and-bddify-x-weakening
hi1 hi2 lo1 lo2 a1 a2 hc1 hc2 lc1 lc2 max-nodes))
((mv fmemo memo)
(apqs-memo-cache x hi lo a hc lc fmemo memo)))
(mv hi lo a hc lc fmemo memo))))))))
(defun aig-bddify-list-x-weakening (lst al max-nodes fmemo memo)
(if (atom lst)
(mv nil nil fmemo memo t)
(b* (((mv hi lo a & & fmemo memo)
(aig-bddify-x-weakening
(car lst) al max-nodes fmemo memo))
((mv rbdds ras fmemo memo exact)
(aig-bddify-list-x-weakening
(cdr lst) al max-nodes fmemo memo)))
(mv (cons hi rbdds)
(cons a ras)
fmemo memo
(and (hqual hi lo) exact)))))
(defun apqs-memo-aig-map (map ;; current map from original subtrees to previously normalized versions
fmemo ;; latest fmemo
memo ;; latest memo
acc)
;; for visibility -- take the current mapping from original AIG subtrees to
;; rewritten ones, rewrite them further with the latest fmemo/memo.
(b* (((when (atom map)) acc)
((when (atom (car map))) (apqs-memo-aig-map (cdr map) fmemo memo acc))
((cons key val) (car map))
((mv ok new-val) (apqs-memo-lookup-aig val fmemo memo))
(new-val (if ok new-val val))
(acc (cons (cons key new-val) acc)))
(apqs-memo-aig-map (cdr map) fmemo memo acc)))
;; AIG-BDDIFY-VAR-WEAKENING tries to simplify an AIG and produce its BDD
;; representation given an alist mapping AIG variables to BDDs. It uses a
;; weakening strategy that replaces too-large BDDs by fresh BDD variables. If
;; the final BDD representation only uses variables that were in the original
;; alist, then this is the exact BDD representation for the AIG.
(defn aig-bddify-var-weakening-var (x al max-count)
(b* ((val (aig-alist-lookup x al)))
(if (booleanp val)
(mv val val 1)
(let* ((c (count-branches-to val max-count))
(count (and c (1+ c))))
(mv val x count)))))
(defun aig-bddify-var-weakening-cache-lookup (x fmemo memo)
(let ((fmem (hons-get x fmemo)))
(if fmem
(mv t (cadr fmem) (caddr fmem) (cdddr fmem) t)
(let ((mem (hons-get x memo)))
(if mem
(mv t (cadr mem) (caddr mem) (cdddr mem) nil)
(mv nil nil nil nil nil))))))
(defun aig-bddify-var-weakening-lookup-aig (x fmemo memo)
(let ((look (or (hons-get x fmemo)
(hons-get x memo))))
(if look
(mv t (third look))
(mv nil nil))))
(defun aig-bddify-var-weakening-aig-map (map ;; current map from original subtrees to previously normalized versions
fmemo ;; latest fmemo
memo ;; latest memo
acc)
;; for visibility -- take the current mapping from original AIG subtrees to
;; rewritten ones, rewrite them further with the latest fmemo/memo.
(b* (((when (atom map)) acc)
((when (atom (car map))) (aig-bddify-var-weakening-aig-map (cdr map) fmemo memo acc))
((cons key val) (car map))
((mv ok new-val) (aig-bddify-var-weakening-lookup-aig val fmemo memo))
(new-val (if ok new-val val))
(acc (cons (cons key new-val) acc)))
(aig-bddify-var-weakening-aig-map (cdr map) fmemo memo acc)))
(defun and-bddify-var-weakening (bdd1 aig1 count1 exact1 bdd2 aig2 count2 exact2
max-count bdd-al nxtbdd)
(b* ((bdd (q-and bdd1 bdd2))
((mv aig count exact)
;; Concept!!! Checking whether the AND can be replaced by one
;; of the conjuncts.
(cond ((eq bdd nil) (mv nil 1 t))
((hqual bdd bdd1) (mv aig1 count1 exact1))
((hqual bdd bdd2) (mv aig2 count2 exact2))
(t (mv (aig-and aig1 aig2)
(and count1 count2 (* count1 count2))
(and exact1 exact2)))))
((mv bdd count bdd-al nxtbdd exact)
(b* (((when (and count (<= count max-count)))
(mv bdd count bdd-al nxtbdd exact))
(c (count-branches-to bdd max-count))
(count (and c (1+ c)))
;; Concept!!! Checking to see whether the result BDD is
;; too big and must be replaced by a variable.
((when (and count (<= count max-count)))
(mv bdd count bdd-al nxtbdd exact))
(b (hons-get bdd bdd-al))
((when b)
(mv (cadr b) (cddr b) bdd-al nxtbdd nil))
(n (count-branches-to nxtbdd max-count))
(n (and n (1+ n))))
(mv nxtbdd n
(hut bdd (cons nxtbdd n) bdd-al)
(hons nxtbdd nxtbdd)
nil))))
(mv bdd aig count bdd-al nxtbdd exact)))
(defn aig-bddify-var-weakening-cache-insert (exact x aig c-ans fmemo memo)
(if exact
(mv (hut x c-ans
(if (hons-get aig fmemo)
fmemo
(hut aig c-ans fmemo)))
memo)
(mv fmemo (hut x c-ans memo))))
;!paper-note: AIG-BDDIFY-VAR-WEAKENING is called SUBST-METHOD.
(defun aig-bddify-var-weakening (x al max-count fmemo memo bdd-al nxtbdd)
;; Concept!!! In this function, if we see an oversized BDD, we
;; replace it by a variable. If this BDD has an entry in BDD-AL, it
;; already has a variable assigned to it and we use that.
;; Otherwise, we assign it a fresh variable.
;; The proof of correctness is in "aig-bddify-var-weakening-correct.lisp".
(aig-cases
x
:true (mv x x 1 fmemo memo bdd-al nxtbdd t)
:false (mv x x 1 fmemo memo bdd-al nxtbdd t)
:var
(mv-let (bdd aig count)
(aig-bddify-var-weakening-var x al max-count)
(mv bdd aig count fmemo memo bdd-al nxtbdd t))
:inv
(b* (((mv bdd aig count fmemo memo bdd-al nxtbdd exact)
(aig-bddify-var-weakening
(car x) al max-count fmemo memo bdd-al nxtbdd)))
(mv (q-not bdd) (aig-not aig) count fmemo memo bdd-al nxtbdd
exact))
:and
(mv-let (cached bdd aig count exact)
(aig-bddify-var-weakening-cache-lookup x fmemo memo)
(if cached
(mv bdd aig count fmemo memo bdd-al nxtbdd exact)
(b* (((mv bdd aig count fmemo memo bdd-al nxtbdd exact)
(mv-let (bdd1 aig1 count1 fmemo memo bdd-al nxtbdd exact1)
(aig-bddify-var-weakening
(car x) al max-count fmemo memo bdd-al nxtbdd)
(if (eq bdd1 nil)
(mv nil nil 1 fmemo memo bdd-al nxtbdd t)
(b* (((mv bdd2 aig2 count2 fmemo memo bdd-al nxtbdd exact2)
(aig-bddify-var-weakening
(cdr x) al max-count fmemo memo bdd-al nxtbdd))
((mv bdd aig count bdd-al nxtbdd exact)
(and-bddify-var-weakening bdd1 aig1 count1 exact1 bdd2
aig2 count2 exact2 max-count
bdd-al nxtbdd)))
(mv bdd aig count fmemo memo bdd-al nxtbdd exact)))))
(c-ans (list* bdd aig count))
((mv fmemo memo)
(aig-bddify-var-weakening-cache-insert exact x aig
c-ans fmemo memo)))
(mv bdd aig count fmemo memo bdd-al nxtbdd exact))))))
;; FMEMO contains "exact" entries and MEMO contains "inexact" ones, but some
;; exact entries may have slipped into MEMO since we don't check on the fly
;; whether the BDDs depend on new variables or not. This looks through the AIG
;; and finds any MEMO entries that should be put in FMEMO instead.
(defun abs-recheck-exactness (x fmemo memo done var-depth)
(aig-cases
x
:true (mv fmemo done)
:false (mv fmemo done)
:var (mv fmemo done)
:inv (abs-recheck-exactness (car x) fmemo memo done var-depth)
:and (if (hons-get x done)
(mv fmemo done)
(let ((done (hut x t done)))
(if (hons-get x fmemo)
(mv fmemo done)
(let* ((mm (hons-get x memo)))
;; mm should be guaranteed to exist, but...
(if (and mm (<= (max-depth (cadr mm)) var-depth))
(mv (hut (caddr mm) (cdr mm) fmemo) done)
(mv-let (fmemo done)
(abs-recheck-exactness
(car x) fmemo memo done var-depth)
(abs-recheck-exactness (cdr x) fmemo memo done
var-depth)))))))))
(defun abs-recheck-exactness-top (x fmemo memo var-depth)
(b* (((mv fmemo done)
(abs-recheck-exactness x fmemo memo 'done var-depth))
(- (flush-hons-get-hash-table-link done))
(m (hons-get x fmemo)))
(mv fmemo (consp m) (and (consp m) (cadr m)))))
(defun aig-bddify-list-var-weakening
(lst al max-nodes fmemo memo bdd-al nxtbdd var-depth)
(if (atom lst)
(progn$ ;; (flush-hons-get-hash-table-link memo)
(flush-hons-get-hash-table-link bdd-al)
(mv nil nil fmemo memo t))
(b* ((x (car lst))
((mv & aig1 & fmemo memo bdd-al1 nxtbdd1 &)
(aig-bddify-var-weakening x al max-nodes fmemo memo
bdd-al nxtbdd))
((mv fmemo exact1 bdd1)
(abs-recheck-exactness-top x fmemo memo
var-depth))
((mv rbdds ras fmemo memo exact)
(aig-bddify-list-var-weakening
(cdr lst) al max-nodes fmemo memo bdd-al1 nxtbdd1 var-depth)))
(mv (cons bdd1 rbdds)
(cons aig1 ras)
fmemo memo
(and exact1 exact)))))
;; This attempts to simplify a list of AIGs and find their BDD representations
;; by interleaving the AIG-BDDIFY-X-WEAKENING and AIG-BDDIFY-VAR-WEAKENING
;; strategies as specified in TRIES. Each entry in TRIES is a list of length
;; two, three, or four; the entries are:
;; 1. either of the symbols XES or VARS, giving the weakening strategy,
;; 2. a positive integer giving the BDD size threshold,
;; 3. (optional) a message to print before the try,
;; 4. (optional) a message to print when the try is completed.
(defun posfix (x)
(if (and (integerp x) (< 0 x))
x
1))
(defthm posfix-type
(posp (posfix x))
:rule-classes (:rewrite :type-prescription))
(defthm posfix-linear
(< 0 (posfix x))
:rule-classes :linear)
(in-theory (disable posfix))
;!paper-note: AIG-BDDIFY-LIST-ITER1 is called AIG-TO-BDD.
;; Set this to T to compute the AIG map at each iteration so that you can map
;; original AIG subtrees to their current simplified forms after extracting
;; things from the backtrace...
(defconst *aig-bddify-map-subtrees* nil)
(defun aig-bddify-list-iter1 (tries x al fmemo nxtbdd var-depth maybe-wash-args map)
;; map is just for visibility-debugging: maps subtrees of original AIG to
;; their most current crunched-down versions.
(declare (xargs :measure (len tries))
(ignorable maybe-wash-args))
(if (atom tries)
(prog2$ (flush-hons-get-hash-table-link fmemo)
(mv nil x nil))
(b* (((list type threshold start-msg end-msg) (car tries))
(threshold (posfix threshold))
(- (and start-msg (cw "~@0" start-msg)))
(- (and maybe-wash-args
(if (consp maybe-wash-args)
(maybe-wash-memory (car maybe-wash-args)
(cadr maybe-wash-args))
(maybe-wash-memory maybe-wash-args nil))))
((mv bdds x fmemo exact map)
(cond ((eq type 'xes)
(b* (((mv bdds x fmemo memo exact)
(aig-bddify-list-x-weakening x al threshold fmemo 'memo))
(new-map (and *aig-bddify-map-subtrees*
(apqs-memo-aig-map map fmemo memo nil))))
(fast-alist-free memo)
(mv bdds x fmemo exact new-map)))
((eq type 'vars)
(b* (((mv bdds x fmemo memo exact)
(aig-bddify-list-var-weakening x al threshold fmemo 'memo
'bdd-al nxtbdd var-depth))
(new-map (and *aig-bddify-map-subtrees*
(aig-bddify-var-weakening-aig-map map fmemo memo nil))))
(fast-alist-free memo)
(mv bdds x fmemo exact new-map)))
(t (prog2$ (er hard 'aig-bddify-list-iter1
"~x0: unrecognized strategy identifier~%"
type)
(mv nil x fmemo nil map)))))
(- (and end-msg (cw "~@0" end-msg)))
((when (or exact (atom (cdr tries))))
(prog2$ (flush-hons-get-hash-table-link fmemo)
(mv bdds x exact))))
(aig-bddify-list-iter1 (cdr tries) x al fmemo nxtbdd var-depth
maybe-wash-args map))))
;; makes a fast, honsed alist consisting of the pairs of x whose cdrs are boolean
(defun bddify-extract-bool-alist (x full last)
(declare (Xargs :guard t))
(if (atom x)
last
(if (atom (car x))
(bddify-extract-bool-alist (cdr x) full last)
(let ((pair (hons-get (caar x) full)))
(if (and pair (booleanp (cdr pair)))
(hons-acons! (caar x) (cdr pair)
(bddify-extract-bool-alist (cdr x) full last))
(bddify-extract-bool-alist (cdr x) full last))))))
;!paper-note: AL-MAX-DEPTH is called TABLE-MAX-VAR.
(defn al-max-depth (al)
(if (atom al)
0
(max (max-depth (ec-call (cdr (car al))))
(al-max-depth (cdr al)))))
(defthm al-max-depth-hons-assoc-equal
(implies (<= (al-max-depth al) n)
(<= (max-depth (cdr (hons-assoc-equal x al))) n))
:rule-classes (:rewrite :linear))
(defun aig-initial-self-map (x acc)
(b* (((when (booleanp x)) acc)
((when (and (not (aig-atom-p x)) (not (cdr x))))
(aig-initial-self-map (car x) acc))
((when (hons-get x acc)) acc)
(acc (hons-acons x x acc))
((when (aig-atom-p x)) acc)
(acc (aig-initial-self-map (car x) acc)))
(aig-initial-self-map (cdr x) acc)))
(defun aiglist-initial-self-map (x acc)
(if (atom x)
acc
(aiglist-initial-self-map (cdr x) (aig-initial-self-map (car x) acc))))
(defun aig-bddify-list (tries x al maybe-wash-args)
(b* ((var-depth (al-max-depth al))
(bool-al (bddify-extract-bool-alist al al 'bddify-tmp-bool-alist))
(x (hons-copy x))
(reduced-x (if (consp bool-al)
(aig-restrict-list x bool-al)
x))
(- (fast-alist-free bool-al))
(init-map (and *aig-bddify-map-subtrees*
(fast-alist-free (aiglist-initial-self-map reduced-x nil)))))
(aig-bddify-list-iter1 tries reduced-x al 'fmemo (qv var-depth)
var-depth maybe-wash-args init-map)))
(defun bddify-mk-old-style-tries (start-thresh incr times vars-thresh)
(declare (xargs :measure (nfix times)
:ruler-extenders (cons)))
(cons (list 'xes start-thresh
(msg "Bddify with x-weakening, threshold ~x0 ..." start-thresh)
" done~%")
(if (<= (nfix times) 1)
nil
(let ((thresh (ceiling (* incr start-thresh) 1)))
(append
(if (<= vars-thresh thresh)
(list (list 'vars thresh
(msg "Bddify with var-weakening, threshold ~x0 ..."
thresh)
" done~%"))
nil)
(bddify-mk-old-style-tries
(ceiling (* incr thresh) 1)
incr (1- times) vars-thresh))))))
(defconst *bddify-default-tries*
(bddify-mk-old-style-tries 256 2 20 2048))
(table evisc-table *bddify-default-tries* "*bddify-default-tries*")
;; There are many variations such as FAIG-BDDIFY-LIST, AIG-BDDIFY-PAT,
;; FAIG-BDDIFY-PAT, FAIG-BDDIFY-ALIST, AIG-BDDIFY-ALIST, etc which we may want
;; to support. Here we write a few functions for transitioning from/to these
;; formats to/from the simple list of AIGs which we support above.
(defun faig-list-to-aig-list (x)
(if (atom x)
nil
(let ((x1 (faig-fix (car x))))
(list* (car x1) (cdr x1)
(faig-list-to-aig-list (cdr x))))))
(defun aig-list-to-faig-list (x)
(if (atom x)
nil
(cons (cons (car x) (cadr x))
(aig-list-to-faig-list (cddr x)))))
(defun pat-to-aig-list (pat x acc)
(if pat
(if (atom pat)
(cons x acc)
(pat-to-aig-list
(car pat) (car x)
(pat-to-aig-list
(cdr pat) (cdr x) acc)))
acc))
(defun aig-list-to-pat (pat x)
(if pat
(if (atom pat)
(mv (car x) (cdr x))
(mv-let (car rest)
(aig-list-to-pat (car pat) x)
(mv-let (cdr rest)
(aig-list-to-pat (cdr pat) rest)
(mv (cons car cdr) rest))))
(mv nil x)))
(defn strip-pair-cars (al)
(if (atom al)
nil
(if (consp (car al))
(cons (caar al) (strip-pair-cars (cdr al)))
(strip-pair-cars (cdr al)))))
(defn strip-pair-cdrs (al)
(if (atom al)
nil
(if (consp (car al))
(cons (cdar al) (strip-pair-cdrs (cdr al)))
(strip-pair-cdrs (cdr al)))))
(defun def-with-bddify-fn (fn world)
(let* ((formals (fgetprop fn 'formals nil world))
(fn-symbol (intern-in-package-of-symbol
(concatenate 'string
(symbol-name fn) "-WITH-BDDIFY")
fn))
(thm-symbol (intern-in-package-of-symbol
(concatenate 'string
(symbol-name fn) "-IN-TERMS-OF-WITH-BDDIFY")
fn)))
`(progn
(defun ,fn-symbol (,@formals tries mwa)
(declare (ignore tries mwa))
(,fn . ,formals))
(defthm ,thm-symbol
(equal (,fn . ,formals)
(,fn-symbol ,@formals *bddify-default-tries* nil))
:hints (("goal" :in-theory (disable ,fn)))
:rule-classes nil))))
(defmacro def-with-bddify (fn)
`(make-event (def-with-bddify-fn ',fn (w state))))
(def-with-bddify aig-eval)
(def-with-bddify faig-eval)
(def-with-bddify aig-eval-list)
(def-with-bddify aig-eval-alist)
(def-with-bddify faig-eval-list)
(def-with-bddify faig-eval-alist)
;; Now we apply these to various shapes of AIG-EVAL.
(local
(progn
(defthm faig-eval-list-to-aig-eval-list
(equal (aig-list-to-faig-list
(aig-eval-list-with-bddify
(faig-list-to-aig-list pairs)
al tries mwa))
(faig-eval-list-with-bddify pairs al tries mwa)))
(defthm aig-eval-alist-is-aig-eval-list
(equal (pairlis$ (strip-pair-cars aig-al)
(aig-eval-list-with-bddify
(strip-pair-cdrs aig-al)
al tries mwa))
(aig-eval-alist-with-bddify aig-al al tries mwa)))
(defthm faig-eval-alist-is-faig-eval-list
(equal (pairlis$ (strip-pair-cars aig-al)
(faig-eval-list-with-bddify
(strip-pair-cdrs aig-al)
al tries mwa))
(faig-eval-alist-with-bddify aig-al al tries mwa)))
(defthm aig-eval-is-aig-eval-list
(equal (car (aig-eval-list-with-bddify (list x) al tries mwa))
(aig-eval-with-bddify x al tries mwa)))
(in-theory (disable aig-eval-with-bddify
aig-eval-list-with-bddify
aig-eval-alist-with-bddify
faig-eval-list-with-bddify
faig-eval-alist-with-bddify))))
;; These theorems will be used as alternative definitions for these functions
;; in symbolic execution.
(defthm faig-eval-in-terms-of-faig-eval-list
(equal (faig-eval-with-bddify x al tries mwa)
(car (faig-eval-list-with-bddify (list x) al tries mwa)))
:hints(("Goal" :in-theory (enable faig-eval-list-with-bddify)))
:rule-classes nil)
(defthm faig-eval-list-in-terms-of-aig-eval-list
(equal (faig-eval-list-with-bddify x al tries mwa)
(aig-list-to-faig-list
(aig-eval-list-with-bddify
(faig-list-to-aig-list x)
al tries mwa)))
:rule-classes nil)
(defthm faig-eval-list-in-terms-of-aig-eval-list-with-bddify
(equal (faig-eval-list-with-bddify pairs al tries mwa)
(aig-list-to-faig-list
(aig-eval-list-with-bddify
(faig-list-to-aig-list pairs)
al tries mwa)))
:rule-classes nil)
(defthm aig-eval-alist-in-terms-of-aig-eval-list
(equal (aig-eval-alist-with-bddify aig-al al tries mwa)
(pairlis$ (strip-pair-cars aig-al)
(aig-eval-list-with-bddify
(strip-pair-cdrs aig-al)
al tries mwa)))
:rule-classes nil)
(defthm faig-eval-alist-in-terms-of-faig-eval-list
(equal (faig-eval-alist-with-bddify aig-al al tries mwa)
(pairlis$ (strip-pair-cars aig-al)
(faig-eval-list-with-bddify
(strip-pair-cdrs aig-al)
al tries mwa)))
:rule-classes nil)
(defthm aig-eval-in-terms-of-aig-eval-list
(equal (aig-eval-with-bddify x al tries mwa)
(car (aig-eval-list-with-bddify (list x) al tries mwa)))
:rule-classes nil)
(defun faig-bddify-list (tries x al maybe-wash-args)
(mv-let (bdds aigs exact)
(aig-bddify-list
tries
(faig-list-to-aig-list x) al maybe-wash-args)
(mv (aig-list-to-faig-list bdds)
(aig-list-to-faig-list aigs)
exact)))
(defun aig-bddify-alist (tries x al maybe-wash-args)
(b* (((mv bdds aigs exact)
(aig-bddify-list
tries
(strip-pair-cdrs x)
al maybe-wash-args))
(cars (strip-pair-cars x)))
(mv (pairlis$ cars bdds)
(pairlis$ cars aigs)
exact)))
(defun faig-bddify-alist (tries x al maybe-wash-args)
(b* (((mv bdds aigs exact)
(faig-bddify-list
tries
(strip-pair-cdrs x)
al maybe-wash-args))
(cars (strip-pair-cars x)))
(mv (pairlis$ cars bdds)
(pairlis$ cars aigs)
exact)))
(defun aig-bddify (tries x al maybe-wash-args)
(b* (((mv bdds aigs exact)
(aig-bddify-list
tries (list x) al maybe-wash-args)))
(mv (car bdds) (car aigs) exact)))
|