1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
; Centaur AIG Library
; Copyright (C) 2008-2011 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Sol Swords <sswords@centtech.com>
;
; July 2011, Jared added lots of documentation.
; August 2013, Jared split base.lisp into aig-base.lisp and faig-base.lisp
(in-package "ACL2")
(include-book "aig-base")
(include-book "centaur/misc/universal-equiv" :dir :system)
(defxdoc faig
:parents (boolean-reasoning)
:short "A @(see hons)-based representation of four-valued functions as
pairs of @(see aig)s."
:long "<p>A <b>FAIG</b> (Four-valued AIG) combines two @(see aig)s together
to represent a function with four possible values. Such functions can be
useful in hardware verification.</p>
<p>We represent an FAIG as the cons of two AIGs, which are called the
<i>onset</i> and <i>offset</i> of the FAIG. Our FAIG evaluation function,
@(see faig-eval), just evaluates these two AIGs, separately, using ordinary
@(see aig-eval), and conses together the resulting Boolean values. So, the
four possible values of an FAIG are:</p>
<ul>
<li>@('(nil . nil)'), which we call Z,</li>
<li>@('(t . nil)'), which we call True,</li>
<li>@('(nil . t)'), which we call False, and</li>
<li>@('(t . t)'), which we call X.</li>
</ul>
<p>We generally think of the onset as being a Boolean functions that should
evaluate to @('T') when the wire is being driven to 1. The offset is similar,
but indicates whether the wire is being driven to 0. So, the Z value
represents a situation where the wire is completely undriven, and the X value
represents a bad case where the wire is simultaneously driven to both True and
False.</p>
<p>Hons convention. We ordinarly construct all AIGs with @(see hons), but we
don't bother to hons the FAIG conses that put these AIGs together.</p>")
(defsection faig-constants
:parents (faig)
:short "The four @(see FAIG) values, representing true, false, X, and Z."
(defmacro faig-x () ''(t . t))
(defmacro faig-z () ''(nil . nil))
(defmacro faig-t () ''(t . nil))
(defmacro faig-f () ''(nil . t)))
; [Jared] BOZO consider a warning as in aig-eval for when faig-eval,
; faig-restrict, etc., are used on non-consp arguments.
(define faig-eval (x env)
:parents (faig)
:short "@(call faig-eval) evaluates @('x'), a @(see faig), under the
environment @('env'), producing a pair of Boolean values."
:long "<p>See @(see aig-eval); the @('env') should be a fast alist and you
will want to clear the memoize table for @('aig-eval') when you are done using
the @('env').</p>"
:enabled t
(if (atom x)
'(t . t)
(cons (aig-eval (car x) env)
(aig-eval (cdr x) env)))
///
(defthm faig-eval-of-constants
(and (equal (faig-eval (faig-t) env) (faig-t))
(equal (faig-eval (faig-f) env) (faig-f))
(equal (faig-eval (faig-z) env) (faig-z))
(equal (faig-eval (faig-x) env) (faig-x))
(equal (faig-eval nil env) (faig-x)))
:hints(("Goal" :in-theory (enable faig-eval)))))
(define faig-fix (x)
:parents (faig)
:short "@(call faig-fix) is the identity for FAIGs, but coerces atoms to
@('(t . t)'), i.e., X."
:long "<p>This is sometimes when reasoning about FAIG operations, and, e.g.,
allows for permissive guards on @(see faig-constructors), etc.</p>"
:enabled t
;; inline this one since it's used in the faig b* binder, and hence just
;; about everywhere that faigs are being constructed or dealt with
:inline t
(if (consp x)
x
(faig-x)))
(defsection faig-fix-equiv
(def-universal-equiv faig-fix-equiv
:equiv-terms ((equal (faig-fix x)))
:short "Syntactic equivalence of faigs under @(see faig-fix)."
:long "Two objects are faig-fix-equiv if their @(see faig-fix)es are equal.")
(verify-guards faig-fix-equiv)
(local (in-theory (enable faig-fix-equiv)))
(defthm faig-fix-equiv-of-faig-fix
(faig-fix-equiv (faig-fix x) x))
(defcong faig-fix-equiv equal (faig-fix x) 1)
(defcong faig-fix-equiv equal (faig-eval x env) 1))
(define faig-fix-list (x)
:parents (faig-fix)
:short "@(call faig-fix-list) fixes every element of a list with @(see
faig-fix)."
:enabled t
(if (atom x)
nil
(cons (faig-fix (car x))
(faig-fix-list (cdr x)))))
(define faig-fix-alist (x)
:parents (faig-fix)
:short "@(call faig-fix-alist) fixes every value in an alist with @(see
faig-fix)."
:enabled t
(cond ((atom x)
nil)
((atom (car x))
;; Bad-alist convention
(faig-fix-alist (cdr x)))
(t
(cons (cons (caar x) (faig-fix (cdar x)))
(faig-fix-alist (cdr x))))))
(def-b*-binder faig
:parents (b*-binders faig)
:short "@(see b*) binder that binds two variables to the onset and offset,
respectively, of the @(see faig-fix) of the given expression."
:decls ((declare (xargs :guard (and (true-listp args)
(equal (len args) 2)
(true-listp forms)
(equal (len forms) 1)))))
:body
`(b* (((mv ,(first args) ,(second args))
(let ((x (faig-fix ,(car forms))))
(mv (car x) (cdr x)))))
,rest-expr))
(define faig-const-p (x)
:parents (4v-sexpr-to-faig)
:short "Recognizer for constant @(see faig)s."
:long "<p>@(call faig-const-p) recognizes conses whose car/cdr are Booleans,
i.e., the four possible constant FAIGs.</p>
<p>This is the FAIG equivalent of @(see 4vp)</p>"
(and (consp x)
(booleanp (car x))
(booleanp (cdr x)))
///
(defthm faig-const-p-of-faig-eval
(faig-const-p (faig-eval x env))
:hints(("Goal" :in-theory (enable faig-eval)))))
(define faig-const-fix (x)
:parents (4v-sexpr-to-faig)
:short "Identity for FAIG constants, or constant X otherwise."
:long "<p>Note that an older version of this function independently coerced
the car/cdr of @('t') to a Booleans when they were conses, but it seems simpler
to just say anything malformed gets fixed to @('X').</p>"
(if (faig-const-p x)
x
(faig-x))
///
(defthm faig-const-fix-of-faig-eval
(equal (faig-const-fix (faig-eval x env))
(faig-eval x env))
:hints(("Goal" :in-theory (enable faig-eval faig-const-p))))
(defthm faig-const-p-of-faig-const-fix
(faig-const-p (faig-const-fix x))
:hints(("Goal" :in-theory (enable faig-const-p))))
(defthm faig-const-fix-of-faig-const
(implies (faig-const-p x)
(equal (faig-const-fix x) x))
:hints(("Goal" :in-theory (enable faig-const-p)))))
(defsection faig-const-equiv
(def-universal-equiv faig-const-equiv
:equiv-terms ((equal (faig-const-fix x)))
:short "Equivalence of faig constants (@(see faig-const-p))."
:long "Two objects are faig-const-equiv if their @(see faig-const-fix)es are equal.")
(verify-guards faig-const-equiv)
(local (in-theory (enable faig-const-equiv)))
(defthm faig-const-equiv-of-faig-const-fix
(faig-const-equiv (faig-const-fix x) x))
(defcong faig-const-equiv equal (faig-const-fix x) 1))
(define faig-const-<= (x y)
:parents (4v-sexpr-to-faig)
:short "Lattice ordering for FAIG constants."
:long "<p>This is just the FAIG equivalent of @(see 4v-<=).</p>"
(let ((x (faig-const-fix x))
(y (faig-const-fix y)))
(or (equal x y)
(equal x (faig-x))))
///
(defcong faig-const-equiv equal (faig-const-<= x y) 1
:hints(("Goal" :in-theory (enable faig-const-<=))))
(defcong faig-const-equiv equal (faig-const-<= x y) 2
:hints(("Goal" :in-theory (enable faig-const-<=)))))
(define faig-eval-list (x env)
:parents (faig-eval)
:short "@(call faig-eval-list) evaluates a list of FAIGs."
:enabled t
(if (atom x)
nil
(cons (faig-eval (car x) env)
(faig-eval-list (cdr x) env)))
///
(defthm nth-of-faig-eval-list
(faig-const-equiv (nth n (faig-eval-list x env))
(faig-eval (nth n x) env))))
(define faig-eval-alist (x env)
:parents (faig-eval)
:short "@(call faig-eval-list) evaluates an FAIG alist (an alist binding
keys to FAIGs)."
:long "<p>The alist @('x') does not need to be fast, and we produce an
ordinary (slow) alist as a result.</p>"
:enabled t
(cond ((atom x)
nil)
((atom (car x))
;; Bad alist convention
(faig-eval-alist (cdr x) env))
(t
(cons (cons (caar x)
(faig-eval (cdar x) env))
(faig-eval-alist (cdr x) env)))))
(define faig-restrict (x sigma)
:parents (faig)
:short "@(call faig-restrict) performs variable substitution throughout the
FAIG @('x'), replacing any variables bound in @('sigma') with their
corresponding values."
:long "<p>See @(see aig-restrict); the @('env') should be a fast alist and
you will want to clear the memoize table for @('aig-restrict') when you are
done using the @('env').</p>"
:enabled t
(if (atom x)
'(t . t)
(cons (aig-restrict (car x) sigma)
(aig-restrict (cdr x) sigma))))
(define faig-restrict-alist (x sigma)
:parents (faig-restrict)
:short "@(call faig-restrict-alist) substitutes into an FAIG alist (an alist
binding keys to FAIGs)."
:long "<p>The alist @('x') does not need to be fast, and we produce an
ordinary (slow) alist as a result.</p>"
:enabled t
(b* (((when (atom x))
nil)
(rest (faig-restrict-alist (cdr x) sigma))
((when (atom (car x)))
;; Bad alist convention
rest))
(cons (cons (caar x) (faig-restrict (cdar x) sigma))
rest)))
(define faig-restrict-alists (x sigma)
:parents (faig-restrict)
:short "@(call faig-restrict-alists) substitutes into a list of FAIG alists."
:enabled t
(if (atom x)
nil
(cons (faig-restrict-alist (car x) sigma)
(faig-restrict-alists (cdr x) sigma))))
(define faig-compose (x sigma)
:parents (faig)
:short "@(call faig-compose) performs variable substitution throughout the
FAIG @('x'), <b>unconditionally</b> replacing every variable in @('x') with its
binding in @('sigma')."
:long "<p>See @(see aig-compose); the @('sigma') should be a fast alist and
you will want to clear the memoize table for @('aig-compose') when you are done
using the @('env').</p>"
:enabled t
(if (atom x)
'(t . t)
(cons (aig-compose (car x) sigma)
(aig-compose (cdr x) sigma))))
(define faig-compose-alist (x sigma)
:parents (faig)
:short "@(call faig-compose-alist) composes into an FAIG Alist (an alist
binding keys to FAIGs)."
:long "<p>The alist @('x') does not need to be fast, and we produce an
ordinary (slow) alist as a result.</p>"
:enabled t
(b* (((when (atom x))
nil)
(rest (faig-compose-alist (cdr x) sigma))
((when (atom (car x)))
;; Bad alist convention
rest))
(cons (cons (caar x) (faig-compose (cdar x) sigma))
rest)))
(define faig-partial-eval (x env)
:parents (faig)
:short "@(call faig-partial-eval) evaluates @('x'), an FAIG, under the
partial environment @('env'), producing a new FAIG as a result."
:long "<p>See @(see aig-partial-eval); the @('env') should be a fast alist
and you will want to clear the memoize table for @('aig-partial-eval') when you
are done using the @('env').</p>"
:enabled t
(if (atom x)
'(t . t)
(cons (aig-partial-eval (car x) env)
(aig-partial-eval (cdr x) env))))
(define faig-partial-eval-alist (x env)
:parents (faig-partial-eval)
:short "@(call faig-partial-eval-alist) partially evaluates an FAIG alist (an
alist binding keys to FAIGs)."
:long "<p>The alist @('x') does not need to be fast, and we produce an
ordinary (slow) alist as a result.</p>"
:enabled t
(b* (((when (atom x))
nil)
(rest (faig-partial-eval-alist (cdr x) env))
((when (atom (car x)))
;; Bad alist convention
rest))
(cons (cons (caar x) (faig-partial-eval (cdar x) env))
rest)))
(define faig-partial-eval-alists (x env)
:parents (faig-partial-eval)
:short "@(call faig-partial-eval-alists) partially evaluates a list of FAIG
alists."
:enabled t
(if (atom x)
nil
(cons (faig-partial-eval-alist (car x) env)
(faig-partial-eval-alists (cdr x) env))))
|