File: core.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (1095 lines) | stat: -rw-r--r-- 40,953 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
; UBDD Library
; Copyright (C) 2008-2011 Warren Hunt and Bob Boyer
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.
; Significantly revised in 2008 by Jared Davis and Sol Swords.
; Now maintained by Centaur Technology.
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/

; core.lisp - fundamental operations, e.g., ubddp, eval-bdd, q-not, and q-ite.

(in-package "ACL2")
(include-book "misc/definline" :dir :system)
(include-book "../misc/memory-mgmt-logic")
(include-book "misc/computed-hint-rewrite" :dir :system)
(include-book "tools/rulesets" :dir :system)
(include-book "xdoc/top" :dir :system)

(defxdoc ubdds
  :parents (boolean-reasoning)
  :short "A @(see hons)-based, unlabeled <a
href='http://en.wikipedia.org/wiki/Binary_decision_diagram'>Binary Decision
Diagram</a> (bdd) representation of Boolean functions."

  :long "<p>UBDDs (\"unlabeled bdds\") are a concise and efficient
implementation of binary decision diagrams.  Unlike most BDD packages, our
internal nodes are not labelled; instead, each node's depth from the root
determines its variable.</p>

<p>The valid UBDDs are recognized by @(see ubddp).  Structurally, UBDDs are a
subset of purely Boolean cons-trees, i.e., trees where all the tips are @('t')
or @('nil').  For instance, the valid one-variable UBDDs are:</p>

<ul>
<li>@('t') or @('nil')  for \"var is irrelevant to this decision\", or</li>
<li>@('(t . nil)')      for \"if var then @('t') else @('nil'), or</li>
<li>@('(nil . t)')      for \"if var then @('nil') else @('t')</li>
</ul>

<p>But @('(t . t)') and @('(nil . nil)') are not permitted&mdash;we reduce them
to @('t') and @('nil'), respectively.  This restriction leads to a key property
of UBDDs, viz. two UBDDs are semantically equivalent exactly when they are
structurally @(see equal).</p>

<p>The semantics of a UBDD are given by the interpreter function @(see
eval-bdd).  Operations that construct UBDDs, such as @(see q-not) and @(see
q-and), are proven correct w.r.t. this interpreter.  We also provide various
theorems to reason about UBDD operations, including the important theorem @(see
equal-by-eval-bdds), and implement some @(see computed-hints) for automating
the use of this theorem.</p>

<p>Our UBDD implementation is made efficient via @(see hons-and-memoization).
We construct UBDDs with @(see hons) and @(see memoize) UBDD constructors such
as @(see q-not) and @(see q-and).</p>")

;;; THE CORE UBDD OPERATIONS

(defsection ubddp
  :parents (ubdds)
  :short "Recognizer for well-formed @(see ubdds)."
  :long "<p>Note: memoized for efficiency.</p>"

  (defund ubddp (x)
    (declare (xargs :guard t))
    (mbe :logic (if (atom x)
                    (booleanp x)
                  (and (ubddp (car x))
                       (ubddp (cdr x))
                       (if (atom (car x))
                           (not (equal (car x) (cdr x)))
                         t)))
         :exec (cond ((eq x t) t)
                     ((eq x nil) t)
                     ((atom x) nil)
                     (t (let ((a (car x))
                              (d (cdr x)))
                          (cond ((eq a t)
                                 (cond ((eq d nil) t)
                                       ((eq d t) nil)
                                       (t (ubddp d))))
                                ((eq a nil)
                                 (cond ((eq d nil) nil)
                                       ((eq d t) t)
                                       (t (ubddp d))))
                                (t (and (ubddp a) (ubddp d)))))))))

  (memoize 'ubddp :condition '(consp x))

  (defthm ubddp-compound-recognizer
    (implies (ubddp x)
             (or (consp x)
                 (booleanp x)))
    :hints(("Goal" :in-theory (enable ubddp)))
    :rule-classes :compound-recognizer))


(defsection ubdd-listp
  :parents (ubdds)
  :short "Recognizer for a list of @(see ubdds)."

  (defund ubdd-listp (l)
    (declare (xargs :guard t))
    (if (atom l)
        (null l)
      (and (ubddp (car l))
           (ubdd-listp (cdr l)))))

  (local (in-theory (enable ubdd-listp)))

  (defthm ubdd-listp-when-atom
    (implies (atom x)
             (equal (ubdd-listp x)
                    (not x))))

  (defthm ubdd-listp-of-cons
    (equal (ubdd-listp (cons a x))
           (and (ubddp a)
                (ubdd-listp x)))))



(defsection eval-bdd
  :parents (ubdds)
  :short "Sematics of a UBDD."
  :long "<p>@(call eval-bdd) evaluates the UBDD @('x') with respect to a list
of Boolean @('values'), returning a Boolean value which we think of as the
<i>interpretation</i> of @('x') for this particular set of values.</p>

<p>Typically @('x') should be a @(see ubddp) and @('values') should be a @(see
boolean-listp), but we do not enforce this in our @(see guard).</p>

<p>When @('x') is @('t') or @('nil'), it represents a constant function and
always evaluates to itself no matter what @('values') are given for the
variables.</p>

<p>When @('x') is any other tree, we use @('(car values)') to guide us down the
@('car') (the \"true branch\") or @('cdr') (the \"false branch\") of @('x').
In case we run out of @('values'), we pretend that @('values') contains an
infinite list of @('nil')s at the end and just follow the false branches of
@('x') all the way down.</p>"

  (defund eval-bdd (x values)
    (declare (xargs :guard t))
    (cond ((atom x)
           ;; This "if" fixes the result to a Boolean.
           (if x t nil))
          ((atom values)
           (eval-bdd (cdr x) nil))
          ((car values)
           (eval-bdd (car x) (cdr values)))
          (t
           (eval-bdd (cdr x) (cdr values))))))


(defsection qcar
  :parents (ubdds)
  :short "The \"true branch\" of a UBDD."
  :long "<p>@(call qcar) returns the true branch of the UBDD @('x').</p>

<p>For a compound UBDD, i.e., @('(a . b)'), we simply return @('a').  But for
the atomic UBDDs @('t') and @('nil'), which represent the constant functions
@('t') and @('nil'), this is the identity function.</p>"

  (definline qcar (x)
    (declare (xargs :guard t))
    (if (consp x)
        (car x)
      x)))

(defsection qcdr
  :parents (ubdds)
  :short "The \"false branch\" of a UBDD."
  :long "<p>@(call qcdr) returns the false branch of the UBDD @('x').</p>

<p>For a compound UBDD, i.e., @('a . b)'), we simply return @('b').  But for
the atomic UBDDs @('t') and @('nil'), which represent the constant functions
@('t') and @('nil'), this is the identity function.</p>"

  (definline qcdr (x)
    (declare (xargs :guard t))
    (if (consp x)
        (cdr x)
      x)))

(defsection qcons
  :parents (ubdds)
  :short "Raw construtor for UBDDs."
  :long "<p>@(call qcons) constructs the UBDD whose true branch is @('x') and
whose false branch is @('y').  It handles any collapsing which needs to
occur.</p>"

  (definline qcons (x y)
    (declare (xargs :guard t))
    (if (if (eq x t)
            (eq y t)
          (and (eq x nil) (eq y nil)))
        x
      (hons x y))))


(defsection ubdd-constructors
  :parents (ubdds)
  :short "Basic functions for constructing UBDDs.")

(defsection q-not
  :parents (ubdd-constructors)
  :short "Negate a UBDD."
  :long "<p>@(call q-not) builds a new UBDD representing @('(not x)').  That
is, the the following is a theorem:</p>

@({
 (equal (eval-bdd (q-not x) values)
        (not (eval-bdd x values)))
})

<p>Note: memoized for efficiency.</p>"

  (defun q-not (x)
    (declare (xargs :guard t))
    (if (atom x)
        (if x nil t)
      (hons (q-not (car x))
            (q-not (cdr x)))))

  (memoize 'q-not :condition
           '(and (consp x)
                 (or (consp (car x))
                     (consp (cdr x))))))


(defsection q-ite-fn
  :parents (ubdd-constructors)
  :short "Basic way to construct a new if-then-else UBDD."

  :long "<p>@(call q-ite-fn) builds a new UBDD representing @('(if x y z)').
That is, the following is a theorem:</p>

@({
 (equal (eval-bdd (q-ite-fn x y z) values)
        (if (eval-bdd x values)
            (eval-bdd y values)
          (eval-bdd z values)))
})

<p>Normally you will want to use @(see q-ite) instead, which is a macro that is
logically the same as @('q-ite-fn'), but expands into a lazy call of
@('q-ite-fn') and can sometimes avoid the need to evaluate y and z.</p>

<p>Note: memoized for efficiency.</p>"

  (defun q-ite-fn (x y z)
    (declare (xargs :guard t))
    (cond ((null x) z)
          ((atom x) y)
          (t (let ((y (if (hons-equal x y) t y))
                   (z (if (hons-equal x z) nil z)))
               (cond ((hons-equal y z) y)
                     ((and (eq y t) (eq z nil)) x)
                     ;; Calling Q-NOT is meant to improve efficiency.
                     ((and (eq y nil) (eq z t)) (q-not x))
                     (t (qcons (q-ite-fn (car x) (qcar y) (qcar z))
                               (q-ite-fn (cdr x) (qcdr y) (qcdr z)))))))))

#||
 (memoize 'q-ite-fn :condition
          '(and (consp x)
                (consp (car x))
                (consp (cdr x))
                (or (and (consp y) (consp (car y)) (consp (cdr y)))
                    (and (consp z) (consp (car z)) (consp (cdr z))))))
||#

; The above condition doesn't memoize Q-ITE-FN calls that could have
; an enormous test structure, but with the test structure being
; (HONS <atom> <huge-structure>) or (HONS <huge-structure> <atom>).

  (memoize 'q-ite-fn :condition  ;; Changed to this on 9 July 2009
           '(and (consp x)
                 (or (consp (car x))
                     (consp (cdr x))))))


(defsection q-ite
  :parents (ubdd-constructors)
  :short "Optimized way to construct a new if-then-else UBDD."

  :long "<p>@(call q-ite) is a macro that is logically equal to @(call
q-ite-fn).  But in the execution, special measures are taken so that we can
sometimes avoid evaluating @('y') or @('z').</p>

<p>At a first approximation, @(call q-ite) expands into</p>

@({
 (let ((<x> x))
   (cond ((null <x>) z)
         ((atom <x>) y)
         (t
          (let* ((<y> y)
                 (<z> z))
            (q-ite-fn <x> <y> <z>)))))
})

<p>The advantage of this over a raw call of @(see q-ite-fn) is that when the
expression for @('x') evaluates to an atom, then we can avoid evaluating @('y')
or @('z').  Hence, when @('y') or @('z') is expensive to evaluate (e.g.,
perhaps they are terms involving calls to UBDD-building operations like @(see
q-not)), we can save some time.</p>

<p>Of course, if neither @('y') nor @('z') is expensive to evaluate, then the
above just adds some minor overhead to each call of @(see q-ite-fn).  Sometimes
we can avoid this overhead by recognizing that they are cheap to evaluate.  In
particular, we claim that constants and variable symbols are always cheap to
evaluate, and so, if both @('y') and @('z') are either constants or variables,
then we do not bother to introduce the @(see let) statement above and instead
we just lay down a raw call of @(see q-ite-fn).</p>"

  (defmacro q-ite (x y z)
    (cond ((and (or (quotep y) (atom y))
                (or (quotep z) (atom z)))
           `(q-ite-fn ,x ,y ,z))
          (t
           `(mbe :logic (q-ite-fn ,x ,y ,z)
                 :exec (let ((q-ite-x-do-not-use-elsewhere ,x))
                         (cond
                          ((null q-ite-x-do-not-use-elsewhere) ,z)
                          ((atom q-ite-x-do-not-use-elsewhere) ,y)
                          (t
                           (let* ((q-ite-y-do-not-use-elsewhere ,y)
                                  (q-ite-z-do-not-use-elsewhere ,z))
                             (prog2$
                              (last-chance-wash-memory)
                              (q-ite-fn q-ite-x-do-not-use-elsewhere
                                        q-ite-y-do-not-use-elsewhere
                                        q-ite-z-do-not-use-elsewhere)))))))))))


;;; REASONING ABOUT THE CORE OPERATIONS




(defthm equal-of-booleans-rewrite    ; !!! Why is this rule here?
  (implies (and (booleanp x)
                (booleanp y))
           (equal (equal x y)
                  (iff x y)))
  :rule-classes ((:rewrite :backchain-limit-lst 1)))


(defsection eval-bdd
  :extension eval-bdd

  (local (in-theory (enable eval-bdd)))

  (defthm eval-bdd-when-not-consp
    (implies (not (consp x))
             (equal (eval-bdd x values)
                    (if x t nil))))

  (defthm eval-bdd-of-non-consp-cheap
    ;; BOZO rescued from below, blah, bad to have both...?
    (implies (not (consp x))
             (equal (eval-bdd x vals)
                    (if x t nil)))
    :rule-classes ((:rewrite :backchain-limit-lst 0)))

  (defthm eval-bdd-of-nil
    (equal (eval-bdd nil values)
           nil))

  (defthm eval-bdd-of-t
    (equal (eval-bdd t values)
           t))

  (defthm eval-bdd-when-non-consp-values
    ;; !!! Could probably be better expressed as a congruence
    ;; rule for a LIST-EQUIV operation.
    (implies (and (syntaxp (not (equal vals *nil*)))
                  (atom vals))
             (equal (eval-bdd x vals)
                    (eval-bdd x nil)))))


(defsection max-depth
  :parents (equal-by-eval-bdds) ;; bozo this is very general...
  :short "Depth of a cons tree."

  (defund max-depth (x)
    (declare (xargs :guard t))
    (if (atom x)
        0
      (1+ (max (max-depth (car x))
               (max-depth (cdr x))))))

  (memoize 'max-depth :condition '(consp x)))


(defsection equal-by-eval-bdds
  :parents (ubdds)
  :short "Reasoning strategy: reduce equality of @(see ubdds) to equality of an
arbitrary evaluation."

  :long "<p>Suppose we know that @('x') and @('y') are @(see ubddp) objects,
and we are trying to prove they are equal.  The @('equal-by-eval-bdds')
approach involves trying to establish this equality by proving the equivalent
fact, roughly:</p>

@({
 (forall values
         (equal (eval-bdd x values)
                (eval-bdd y values)))
})

<p>Actually, we can even assume that @('values') has a certain length and
contains only Booleans, but usually these extra facts are not needed.</p>

<p>It is somewhat tricky to implement this sort of reduction in ACL2.  Our
approach is very similar to the \"pick a point\" strategy for proving that sets
are equal, described in the following paper:</p>

<p>Jared Davis. <a
href='http://www.cs.utexas.edu/~jared/publications/2004-acl2-osets/set-theory.pdf'>
Finite Set Theory based on Fully Ordered Lists.</a> In <a
href='http://www.cs.utexas.edu/users/moore/acl2/workshop-2004/'>ACL2 2004</a>.
November, 2004, Austin, TX, USA.</p>

<p>The computed hint @(see equal-by-eval-bdds-hint) automates the strategy.
That is, when this hint is active, ACL2 will automatically try to use
@('equal-by-eval-bdds') to prove equalities when we can determine (with
rewriting) that @('x') and @('y') are @(see ubddp)s.</p>

<p>At any rate, if you want to prove that @('(foo ...)') and @('(bar ...)') are
equal BDDs, you might start by proving the rules:</p>

@({
 (equal (eval-bdd (foo ...) values)
        (... expression 1 ...))

 (equal (eval-bdd (bar ...) values)
        (... expression 2 ...))
})

<p>Then you will be able to prove @('(equal (foo ...) (bar ...))') by arguing
that expression 1 and expression 2 are equal.</p>"

  ;; We want to write the rule:
  ;;
  ;;    (ubddp x)
  ;;    (ubddp y)
  ;;   -------------
  ;;    (equal x y) = (forall values
  ;;                          (equal (eval-bdd x values)
  ;;                                 (eval-bdd y values)))
  ;;
  ;; But this is not possible to do with a regular rewrite rule due to the
  ;; nested quantifier.  So we instead we begin by expressing our hypotheses as
  ;; a constraint about uninterpreted function symbols.

  (encapsulate
   (((bdd-hyps) => *)
    ((bdd-lhs)  => *)
    ((bdd-rhs)  => *))

   (local (defun bdd-hyps () nil))
   (local (defun bdd-lhs  () nil))
   (local (defun bdd-rhs  () nil))

   (defthmd bdd-equivalence-constraint
     (implies (and (bdd-hyps)
                   (equal (len arbitrary-values)
                          (max (max-depth (bdd-lhs))
                               (max-depth (bdd-rhs))))
                   (boolean-listp arbitrary-values)
                   (ubddp (bdd-lhs))
                   (ubddp (bdd-rhs)))
              (equal (eval-bdd (bdd-lhs) arbitrary-values)
                     (eval-bdd (bdd-rhs) arbitrary-values)))))


  ;; Now we use this constraint to prove a generic theorem that says (bdd-lhs)
  ;; and (bdd-rhs) are equal when the (bdd-hyps) hold.  This takes a bit of
  ;; work because of the weaker constraint we chose above.

  (local (defund find-conflicting-values (x y)
           (declare (xargs :measure (+ (acl2-count x) (acl2-count y))))
           (if (or (consp x)
                   (consp y))
               ;; At least one of them is a cons.  We descend both trees and try
               ;; to discover a path that will break their equality.
               (mv-let (car-successp car-path)
                 (find-conflicting-values (qcar x) (qcar y))
                 (if car-successp
                     ;; We took the "true" branch.
                     (mv t (cons t car-path))
                   (mv-let (cdr-successp cdr-path)
                     (find-conflicting-values (qcdr x) (qcdr y))
                     (if cdr-successp
                         (mv t (cons nil cdr-path))
                       (mv nil nil)))))
             ;; Otherwise, both are atoms.  If they are equal, then we have failed to
             ;; find a conflicting path.  But if they are not equal, then this path
             ;; violates their success.
             (mv (not (equal x y)) nil))))

  (local (defthm mv-nth-1
           (equal (mv-nth 1 x)
                  (cadr x))
           :hints(("Goal" :in-theory (enable mv-nth)))))

  (local (defthm lemma1
           (implies (and (ubddp x)
                         (ubddp y)
                         (car (find-conflicting-values x y)))
                    (equal (equal (eval-bdd x (cadr (find-conflicting-values x y)))
                                  (eval-bdd y (cadr (find-conflicting-values x y))))
                           nil))
           :hints(("Goal" :in-theory (enable (:induction find-conflicting-values)
                                             eval-bdd ubddp)
                   :induct (find-conflicting-values x y)
                   :expand ((find-conflicting-values x y))))))

  (local (defthm lemma2
           (implies (and (ubddp x)
                         (ubddp y))
                    (equal (car (find-conflicting-values x y))
                           (not (equal x y))))
           :hints(("Goal" :in-theory (enable (:induction find-conflicting-values)
                                              ubddp)
                   :induct (find-conflicting-values x y)
                   :expand ((find-conflicting-values x y))))))

  (local (defthm lemma3
           (<= (len (cadr (find-conflicting-values x y)))
               (max (max-depth x) (max-depth y)))
           :hints(("Goal" :in-theory (enable (:induction find-conflicting-values)
                                              ubddp)
                   :induct (find-conflicting-values x y)
                   :expand ((find-conflicting-values x y)
                            (max-depth x) (max-depth y))))
           :rule-classes (:linear :rewrite)))

  (local (defthm lemma4
           (boolean-listp (cadr (find-conflicting-values x y)))
           :hints(("Goal" :in-theory (enable find-conflicting-values)))))

  (local (defun extend-to-len (lst n)
           (declare (xargs :guard t))
           (if (zp (nfix n))
               lst
             (if (atom lst)
                 (cons nil (extend-to-len lst (1- n)))
               (cons (car lst) (extend-to-len (cdr lst) (1- n)))))))

  (local (defthm extend-to-len-of-cons
           (equal (extend-to-len (cons a b) n)
                  (cons a (extend-to-len b (1- n))))))

  (local (defun eval-extend-induct (x lst n)
           (if (zp (nfix n))
               (cons lst x)
             (if (atom lst)
                 (list (eval-extend-induct (car x) lst (1- n))
                       (eval-extend-induct (cdr x) lst (1- n)))
               (list (eval-extend-induct (car x) (cdr lst) (1- n))
                     (eval-extend-induct (cdr x) (cdr lst) (1- n)))))))

  (local (defthm eval-bdd-of-extend
           (equal (eval-bdd x (extend-to-len lst n))
                  (eval-bdd x lst))
           :hints (("goal" :in-theory (enable eval-bdd)
                    :induct (eval-extend-induct x lst n)))))

  (local (defthm len-of-extend
           (equal (len (extend-to-len lst n))
                  (max (len lst) (nfix n)))))

  (local (defthm boolean-listp-of-extend
           (implies (boolean-listp lst)
                    (boolean-listp (extend-to-len lst n)))))

  ;; Finally, here is the theorem we are going to functionally instantiate.

  (defthm equal-by-eval-bdds
    (implies (and (bdd-hyps)
                  (ubddp (bdd-lhs))
                  (ubddp (bdd-rhs)))
             (equal (equal (bdd-lhs) (bdd-rhs))
                    t))
    :hints(("Goal"
            :use ((:instance bdd-equivalence-constraint
                             (arbitrary-values (extend-to-len
                                                (cadr (find-conflicting-values
                                                       (bdd-lhs) (bdd-rhs)))
                                                (max (max-depth (bdd-lhs))
                                                     (max-depth (bdd-rhs)))))))))))




(defsection term-is-bdd
  :parents (equal-by-eval-bdds)
  :short "Heuristic for deciding which terms are UBDDs."

  :long "<p>The computed hint @(see equal-by-eval-bdds-hint) is supposed to
automatically apply @(see equal-by-eval-bdds) when we are trying to prove that
two @(see ubdds) are @(see equal).  But a basic prerequisite to being able to
do this is to determine whether the terms on either side of an equality are
actually UBDDs or not.</p>

<p>We use the function @('term-is-bdd') to decide if a particular term is a
BDD.  For variables, we ask the rewriter if the variable is known to be a
@('ubddp').  For quoted constants, we just run @('ubddp') to see if it's a
UBDD.</p>

<p>For function calls, we set up a @('bdd-fns') table that lists functions that
produce BDDs, and we just check whether the function being called is mentioned
in this table.  This is a pretty dumb heuristic, and we may eventually want a
more flexible notion here that allows us to pattern match against @(see
mv-nth)s and so on.</p>

<p>When you add your own BDD producing functions, you may wish to use @(call
add-bdd-fn) to add them to the @('bdd-fns') table.</p>"

  (defmacro bdd-fns ()
    '(cdr (assoc 'bdd-fns (table-alist 'bdd-fns world))))

  (defmacro set-bdd-fns (val)
    `(table bdd-fns 'bdd-fns ,val))

  (defmacro add-bdd-fn (fnname)
    `(set-bdd-fns (cons ',fnname (bdd-fns))))

  (defmacro add-bdd-fns (fnnames)
    `(set-bdd-fns (append ',fnnames (bdd-fns))))

  (set-bdd-fns nil)

  ;; What follows is nasty ACL2 magic.  You probably don't want to try to
  ;; understand it unless you need to.

  (defun term-is-bdd (term hyps whole hist pspv world ctx state)
    ;; This function decides whether we think that TERM is a ubddp.  If it is a
    ;; variable, we ask the rewriter if it's known to be a ubddp.  If it's a
    ;; quoted constant, we see if its value is a ubddp.  And if it's a function
    ;; call, we see if it is one of the functions we explicitly mentioned in
    ;; bdd-fns.
    (declare (xargs :mode :program :stobjs state))
    (cond ((atom term)
           (let ((term-and-ttree
                  (computed-hint-rewrite
                   `(ubddp ,term) hyps t whole hist pspv world ctx state)))
             (equal (car term-and-ttree) *t*)))
          ((eq (car term) 'quote)
           ;; !!! Note to Sol: Jared changed this to ubddp from booleanp.
           (ubddp (cadr term)))
          (t
           (member-eq (car term) (bdd-fns))))))


(defsection equal-by-eval-bdds-hint
  :parents (equal-by-eval-bdds)
  :short "Basic automation of @(see equal-by-eval-bdds)."

  :long "<p>This is a computed hint in the spirits of the ordered sets
library's pick-a-point automation.  It reduces questions of BDD equality to
questions of BDD evaluation.</p>"

  (defun equal-by-eval-bdds-hint-fn (id clause hist pspv ctx stable world state)
    (declare (xargs :mode :program :stobjs state)
             (ignorable id))
    (if (not stable)
        ;; Don't suggest anything until the goal is stable.  This gives other
        ;; rules a chance to fire.
        nil
      (let* ((rcnst (access prove-spec-var pspv :rewrite-constant))
             (ens   (access rewrite-constant rcnst :current-enabled-structure)))
        (if (not (enabled-numep (fnume '(:rewrite equal-by-eval-bdds) world) ens))
            ;; Don't suggest anything if equal-by-eval-bdds is
            ;; disabled.  This gives the user an easy way to turn off
            ;; the strategy.
            nil
          (let ((conclusion (car (last clause))))
            (if (not (and (consp conclusion)
                          (or (eq (car conclusion) 'equal)
                              (eq (car conclusion) 'not))))
                nil
              ;; We look for conclusions of the form (equal lhs rhs)
              ;; or (not lhs).  We think of (not lhs) as the same as
              ;; (equal lhs nil).
              (let ((lhs  (second conclusion))
                    (rhs  (or (third conclusion) *nil*))
                    (hyps (dumb-negate-lit-lst (butlast clause 1))))
                ;; We only want to apply the hint if we believe lhs
                ;; and rhs are ubddp objects.
                (let ((lhs-okp
                       (term-is-bdd lhs hyps clause hist pspv world ctx state)))
                  (if (not lhs-okp)
                      nil
                    (let ((rhs-okp
                           (term-is-bdd rhs hyps clause hist pspv world ctx state)))
                      (if (not rhs-okp)
                          nil
                        ;; We think LHS and RHS are ubddp's.  Go ahead
                        ;; and give the hint.
                        (let ((hint `(:use (:functional-instance
                                            equal-by-eval-bdds
                                            (bdd-hyps (lambda () (and ,@hyps)))
                                            (bdd-lhs  (lambda () ,lhs))
                                            (bdd-rhs  (lambda () ,rhs))))))
                          (prog2$
                           ;; And tell the user what's happening.
                           (cw "~|~%We now appeal to ~s3 in an ~
                                attempt to show that ~x0 and ~x1 ~
                                are equal because all of their ~
                                evaluations under ~s2 are the ~
                                same.  (You can disable ~s3 to ~
                                avoid this.  See :doc ~s3 for more ~
                                details.)~|~%"
                               (untranslate lhs nil world)
                               (untranslate rhs nil world)
                               'eval-bdd
                               'equal-by-eval-bdds)
                           hint)))))))))))))

  (defmacro equal-by-eval-bdds-hint ()
    `(equal-by-eval-bdds-hint-fn id clause hist pspv ctx
                                 stable-under-simplificationp world state))

  (add-default-hints!
   '((equal-by-eval-bdds-hint))))



(defsection equal-by-eval-bdds-hint-heavy
  :parents (equal-by-eval-bdds)
  :short "Experimental \"heavyweight\" hint."

  :long "<p>Sometimes it is difficult to make use of equalities between BDDs
when carrying out the pick-a-point proof.  QS-SUBSET-MODE is one way to
approach this.  And the HEAVY hint below is another.  The idea is to replace
other equalities between BDDs with what they mean in terms of the
arbitrary-values which have just been picked.</p>

<p>BOZO this was a precursor to the defwitness stuff, right?  Should we port
this to use defwitness, etc.?</p>"

  (defun lit-find-equality (lit)
    (case-match lit
      (('not ('ubddp . &) . &)
       (mv nil nil nil))
      (('ubddp . &)
       (mv nil nil nil))
      (('not ('equal a b . &) . &)
       (mv 'ineq a b))
      (('not a . &)
       (mv 'eq a *nil*))
      (('equal a b . &)
       (mv 'eq a b))
      (& (mv 'ineq lit *nil*))))

  (defun collect-ubddp-eq-and-ineqs (clause whole hyps hist pspv ctx world state)
    (declare (xargs :mode :program :stobjs state))
    (if (atom clause)
        (mv nil nil nil state)
      (mv-let (eqs ineqs remhyps state)
        (collect-ubddp-eq-and-ineqs (cdr clause) whole hyps hist pspv ctx world
                                    state)
        (let ((conclusion (car clause)))
          (mv-let (sense lhs rhs)
            (lit-find-equality conclusion)
            (let ((lhs-okp
                   (term-is-bdd lhs hyps whole hist pspv world ctx state)))
              (if (not lhs-okp)
                  (mv eqs ineqs (cons (dumb-negate-lit conclusion) remhyps) state)
                (let ((rhs-okp
                       (term-is-bdd rhs hyps whole hist pspv world ctx state)))
                 (if (not rhs-okp)
                     (mv eqs ineqs (cons (dumb-negate-lit conclusion) remhyps) state)
                   (case sense
                     (eq    (mv (cons (cons lhs rhs) eqs) ineqs
                                (cons (dumb-negate-lit conclusion) remhyps)
                                state))
                     (ineq  (mv eqs (cons (cons lhs rhs) ineqs) remhyps state))
                     (t     (mv eqs ineqs
                                (cons (dumb-negate-lit conclusion) remhyps)
                                state))))))))))))


  (defun collect-eq-hyps (eq-hyps acc)
    (declare (xargs :mode :program))
    (if (atom eq-hyps)
        acc
      (collect-eq-hyps
       (cdr eq-hyps)
       (cons `(equal (eval-bdd ,(caar eq-hyps) arbitrary-values)
                     (eval-bdd ,(cdar eq-hyps) arbitrary-values))
             acc))))

  (defun collect-hints (eqs hyps)
    (declare (xargs :mode :program))
    (if (atom eqs)
        nil
      (cons `(:use (:functional-instance equal-by-eval-bdds
                                         (bdd-hyps (lambda () (and . ,hyps)))
                                         (bdd-lhs  (lambda () ,(caar eqs)))
                                         (bdd-rhs  (lambda () ,(cdar eqs)))))
            (collect-hints (cdr eqs) hyps))))

  (defun equal-by-eval-bdds-hint-heavy-fn (id clause hist pspv ctx stable world state)
    (declare (xargs :mode :program :stobjs state)
             (ignorable id))
    (if (not stable)
        ;; Don't suggest anything until the goal is stable.  This
        ;; gives other rules a chance to fire.
        (value nil)
      (let* ((rcnst (access prove-spec-var pspv :rewrite-constant))
             (ens   (access rewrite-constant rcnst :current-enabled-structure)))
        (if (not (enabled-numep (fnume '(:rewrite equal-by-eval-bdds) world) ens))
            ;; Don't suggest anything if equal-by-eval-bdds is
            ;; disabled.  This gives the user an easy way to turn off
            ;; the strategy.
            (value nil)
          (let ((hyps (dumb-negate-lit-lst clause)))
            (mv-let (eqs ineqs new-hyps state)
              (collect-ubddp-eq-and-ineqs clause clause hyps
                                          hist pspv ctx world state)
              (if (not eqs)
                  (value nil)
                (let* ((new-hyps (collect-eq-hyps ineqs new-hyps))
                       (hints (collect-hints eqs new-hyps)))
                  (prog2$ nil ;; (cw "hyps: ~x0~%hints: ~x1~%" hyps hints)
                          (value (list :or hints)))))))))))

  (defmacro equal-by-eval-bdds-hint-heavy ()
    `(equal-by-eval-bdds-hint-heavy-fn
      id clause hist pspv ctx stable-under-simplificationp world state))


  (defun equal-by-eval-bdds-inst-fn (lhs rhs concl add-hyps
                                         instantiate-hyps clause hist pspv ctx
                                         world state)
    (declare (xargs :mode :program :stobjs state))
    (let ((clhyps (dumb-negate-lit-lst clause)))
      (mv-let (cleqs clineqs cl-new-hyps state)
        (collect-ubddp-eq-and-ineqs
         clause clause clhyps hist pspv ctx world state)
        (mv-let (lhs rhs state)
          (cond ((and lhs rhs)
                 (mv (car lhs) (car rhs) state))
                (concl
                 (er-let* ((concl (translate (car concl) t t t
                                             'equal-by-eval-bdds-inst world state)))
                   (mv-let (sense lhs rhs)
                     (lit-find-equality (car concl))
                     (declare (ignore sense))
                     (mv lhs rhs state))))
                (t (mv (caar (last cleqs)) (cdar (last cleqs)) state)))
          (let* ((hyps
                  (if (and instantiate-hyps (car instantiate-hyps))
                      (collect-eq-hyps clineqs cl-new-hyps)
                    clhyps))
                 (hyps
                  (if add-hyps
                      (append (car add-hyps) hyps)
                    hyps)))
            (let ((res `(:use (:functional-instance
                           equal-by-eval-bdds
                           (bdd-hyps (lambda () (and . ,hyps)))
                           (bdd-lhs  (lambda () ,lhs))
                           (bdd-rhs  (lambda () ,rhs))))))
              (prog2$ (cw "res: ~x0~%" res)
                      (value res))))))))

  (defmacro equal-by-eval-bdds-inst (&key (lhs 'nil lhsp)
                                          (rhs 'nil rhsp)
                                          (concl 'nil conclp)
                                          (add-hyps 'nil add-hypsp)
                                          (instantiate-hyps 'nil instantiate-hypsp))
    `(equal-by-eval-bdds-inst-fn ,(and lhsp `(list ,lhs))
                                 ,(and rhsp `(list ,rhs))
                                 ,(and conclp `(list ,concl))
                                 ,(and add-hypsp `(list ,add-hyps))
                                 ,(and instantiate-hypsp `(list ,instantiate-hyps))
                                 clause hist pspv ctx world state)))


(defsection q-not
  :extension q-not

  (add-bdd-fn q-not)

  (local (in-theory (enable q-not)))

  (defthm consp-of-q-not
    (equal (consp (q-not x))
           (consp x))
    :hints(("Goal" :in-theory (enable q-not))))

  (defthm equal-t-and-q-not
    (equal (equal t (q-not x))
           (not x)))

  (defthm equal-nil-and-q-not
    (equal (equal nil (q-not x))
           (and (atom x)
                (if x t nil))))

  (defthm q-not-under-iff
    (iff (q-not x)
         (if (consp x)
             t
           (if x nil t))))

  (defthm ubddp-of-q-not
    (implies (force (ubddp x))
             (equal (ubddp (q-not x))
                    t))
    :hints(("Goal" :in-theory (enable ubddp))))

  (defthm eval-bdd-of-q-not
    (equal (eval-bdd (q-not x) values)
           (not (eval-bdd x values)))
    :hints(("Goal" :in-theory (enable eval-bdd)))))



(defsection q-ite
  :extension q-ite

  (add-bdd-fn q-ite-fn)
  (add-macro-alias q-ite q-ite-fn)

  (local (in-theory (disable (:type-prescription q-ite-fn)
                             equal-of-booleans-rewrite
                             eval-bdd-when-not-consp
                             eval-bdd-when-non-consp-values)))

  (local (defun q-ite-induct (x y z)
           (declare (ignorable y z))
           (cond ((null x) nil)
                 ((atom x) nil)
                 (t (let ((y (if (equal x y) t y))
                          (z (if (equal x z) nil z)))
                      (list (q-ite-induct (car x) (qcar y) (qcar z))
                            (q-ite-induct (cdr x) (qcdr y) (qcdr z))))))))

  (defthm ubddp-of-q-ite
    (implies (and (force (ubddp x))
                  (force (ubddp y))
                  (force (ubddp z)))
             (equal (ubddp (q-ite x y z))
                    t))
    :hints(("Goal"
            :in-theory (e/d (ubddp) (default-car default-cdr))
            :induct (q-ite-induct x y z)
            :expand ((:free (y z) (q-ite-fn x y z))
                     (:free (y z) (q-ite-fn nil y z))
                     (:free (y z) (q-ite-fn t y z))))))

  (local (defun q-ite-induct-vals (x y z vals)
           (declare (ignorable y z))
           (cond ((null x) nil)
                 ((atom x) nil)
                 (t (let ((y (if (equal x y) t y))
                          (z (if (equal x z) nil z)))
                      (cond ((car vals)
                             (q-ite-induct-vals (car x) (qcar y) (qcar z) (cdr vals)))
                            (t
                             (q-ite-induct-vals (cdr x) (qcdr y) (qcdr z) (cdr vals)))))))))

  (with-output
   :off prove
   (defthm eval-bdd-of-q-ite
     (equal (eval-bdd (q-ite x y z) values)
            (if (eval-bdd x values)
                (eval-bdd y values)
              (eval-bdd z values)))
     :hints(("Goal"
             :in-theory (enable eval-bdd)
             :induct (q-ite-induct-vals x y z values)
             :expand ((:free (y z) (q-ite-fn x y z))
                      (:free (y z) (q-ite-fn nil y z))
                      (:free (y z) (q-ite-fn t y z))))))))



(defsection canonicalize-q-not
  :extension q-not

  (defthm canonicalize-q-not
    (implies (force (ubddp x))
             (equal (q-not x)
                    (q-ite x nil t)))
    :rule-classes :definition))


(defsection canonicalize-to-q-ite
  :parents (ubdds q-ite)
  :short "Reasoning strategy: rewrite all BDD-building functions into calls of
  @(see q-ite)."

  :long "<p>This isn't an especially good reasoning strategy, and we generally
prefer @(see equal-by-eval-bdds) instead.</p>

<p>@('canonicalize-to-q-ite') is a <see topic='@(url rulesets)'>ruleset</see>
that holds theorems for rewriting other BDD-constructing functions into
@('q-ite') form.</p>"

  (def-ruleset canonicalize-to-q-ite '(canonicalize-q-not)))




(defsection q-ite-reductions
  :parents (q-ite)
  :short "Basic rewriting of @(see q-ite) expressions."
  :long "<p>When using the @(see canonicalize-to-q-ite) strategy, you generally
end up with big nests of @(see q-ite) calls.  Afterward, these basic sorts of
reductions can be useful.</p>"

  ;; !!! I think we should maybe be able to get some more of these
  ;; hypothesis free if we change q-ite-fn around a bit so that it
  ;; coerces atoms into booleans.  Would performance be okay?

  (defthm |(q-ite x (q-ite y nil t) z)|
    (implies (and (syntaxp (not (equal z ''t))) ;; Prevents loops (see next rule)
                  (force (ubddp x))
                  (force (ubddp y))
                  (force (ubddp z)))
             (equal (q-ite x (q-ite y nil t) z)
                    (q-ite y
                           (q-ite x nil z)
                           (q-ite x t z)))))

  (defthm |(q-ite x (q-ite y nil t) t)|
    ;; ACL2's loop-stopper works.
    (implies (and (force (ubddp x))
                  (force (ubddp y))
                  (force (ubddp z)))
             (equal (q-ite x (q-ite y nil t) t)
                    (q-ite y (q-ite x nil t) t))))

  (defthm |(q-ite (q-ite a b c) x y)|
    (implies (and (force (ubddp a))
                  (force (ubddp b))
                  (force (ubddp c))
                  (force (ubddp x))
                  (force (ubddp y)))
             (equal (q-ite (q-ite a b c) x y)
                    (q-ite a
                           (q-ite b x y)
                           (q-ite c x y)))))

  (defthm |(q-ite x y y)|
    (equal (q-ite x y y)
           y)
    :hints(("Goal" :in-theory (enable q-ite))))

  (defthm |(q-ite x x y)|
    (implies (and (force (ubddp x))
                  (force (ubddp y)))
             (equal (q-ite x x y)
                    (q-ite x t y))))

  (defthm |(q-ite x y x)|
    (equal (q-ite x y x)
           (q-ite x y nil))
    :hints(("Goal" :in-theory (e/d (q-ite) ((force))))))

  (defthm |(q-ite x t nil)|
    (implies (force (ubddp x))
             (equal (q-ite x t nil)
                    x)))

  (defthm |(q-ite non-nil y z)|
    (implies (and (atom x)
                  x)
             (equal (q-ite x y z)
                    y))
    :hints(("Goal" :in-theory (enable q-ite))))

  (defthm |(q-ite t x y)|
    (equal (q-ite t x y)
           x)
  :hints(("Goal" :in-theory (enable q-ite))))

  (defthm |(q-ite nil x y)|
    (equal (q-ite nil x y)
           y)
    :hints(("Goal" :in-theory (enable q-ite)))))