File: deps.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (211 lines) | stat: -rw-r--r-- 7,283 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
; UBDD Library
; Copyright (C) 2008-2011 Warren Hunt and Bob Boyer
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.
; Significantly revised in 2008 by Jared Davis and Sol Swords.
; Now maintained by Centaur Technology.
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/

; deps.lisp - tracking variable dependencies of BDDs

(in-package "ACL2")
(include-book "extra-operations")


;; UBDD-DEPS: Produce a list of Ts and NILs indicating which variables the input
;; BDD depends on.

(defn or-lists (x y)
  (if (atom x)
      y
    (if (atom y) x
      (cons (or (car x) (car y))
            (or-lists (cdr x) (cdr y))))))

(defthm nth-of-or-lists
  (equal (nth n (or-lists x y))
         (or (nth n x) (nth n y))))

(in-theory (disable or-lists))


(defn ubdd-deps (x)
  (if (atom x)
      nil
    (cons (not (hons-equal (car x) (cdr x)))
          (or-lists (ubdd-deps (car x)) (ubdd-deps (cdr x))))))

(memoize 'ubdd-deps :condition '(consp x))

(in-theory (disable ubdd-deps))

(local (defun eval-ubdd-deps-ind (x n env)
         (if (atom x)
             (list n env)
           (if (car env)
               (eval-ubdd-deps-ind (car x) (1- n) (cdr env))
             (eval-ubdd-deps-ind (cdr x) (1- n) (cdr env))))))

(defthm eval-bdd-of-update-when-not-dependent
  (implies (not (nth n (ubdd-deps x)))
           (equal (eval-bdd x (update-nth n v env))
                  (eval-bdd x env)))
  :hints (("goal" :induct (eval-ubdd-deps-ind x n env)
           :in-theory (enable (:i eval-bdd))
           :expand ((:free (env) (eval-bdd x env))
                    (ubdd-deps x)
                    (:free (a b) (nth n (cons a b)))))))

(local (defun bdd-deps-ind (x n)
         (if (zp n)
             x
           (list (bdd-deps-ind (car x) (1- n))
                 (bdd-deps-ind (cdr x) (1- n))))))

(local (defun 2bdd-deps-ind (x y n)
         (if (zp n)
             (list x y)
           (list (2bdd-deps-ind (car x) (car y) (1- n))
                 (2bdd-deps-ind (cdr x) (cdr y) (1- n))))))

(local (defun q-ite-deps-ind (x y z n)
         (declare (xargs :measure (nfix n)))
         (if (zp n)
             (list x y z)
           (list (q-ite-deps-ind (car x)
                                 (if (hons-equal x y) t (qcar y))
                                 (if (hons-equal x z) nil (qcar z))
                                 (1- n))
                 (q-ite-deps-ind (cdr x)
                                 (if (hons-equal x y) t (qcdr y))
                                 (if (hons-equal x z) nil (qcdr z))
                                 (1- n))))))


(local (in-theory (disable equal-of-booleans-rewrite)))

(local (defthm nth-ubdd-deps-of-qcons
         (equal (nth n (ubdd-deps (qcons x y)))
                (if (zp n)
                    (not (equal x y))
                  (nth (1- n) (or-lists (ubdd-deps x) (ubdd-deps y)))))
         :hints(("Goal" :in-theory (enable ubdd-deps)))))

(local (defthm nth-ubdd-deps-of-cons
         (equal (nth n (ubdd-deps (cons x y)))
                (if (zp n)
                    (not (equal x y))
                  (nth (1- n) (or-lists (ubdd-deps x) (ubdd-deps y)))))
         :hints(("Goal" :in-theory (enable ubdd-deps)))))

(local (defthm nth-of-ubdd-deps-when-zp
         (implies (and (syntaxp (symbolp x))
                       (zp n))
                  (equal (nth n (ubdd-deps x))
                         (not (equal (car x) (cdr x)))))
         :hints(("Goal" :in-theory (enable ubdd-deps)))
         :rule-classes ((:rewrite :backchain-limit-lst 0))))

(local (defthm nth-of-ubdd-deps-when-not-zp
         (implies (and (syntaxp (symbolp x))
                       (not (zp n)))
                  (equal (nth n (ubdd-deps x))
                         (nth (1- n) (or-lists
                                      (ubdd-deps (car x))
                                      (ubdd-deps (cdr x))))))
         :hints(("Goal" :in-theory (enable ubdd-deps)))
         :rule-classes ((:rewrite :backchain-limit-lst 0))))


(local (in-theory (disable qcons nth)))

(local (defthm nth-of-nil
         (not (nth n nil))
         :hints(("Goal" :in-theory (enable nth)))))

(local (defthm or-lists-identical
         (equal (or-lists x x)
                x)
         :hints(("Goal" :in-theory (enable or-lists)))))

(defthm ubdd-deps-of-qv
  (equal (ubdd-deps (qv n))
         (update-nth n t nil))
  :hints(("Goal" :in-theory (enable (:i qv))
          :induct (qv n)
          :expand ((qv n)
                   (:free (x y) (ubdd-deps (cons x y)))))))

;; BOZO may also prove that if (nth n (ubdd-deps x)) and (ubddp x), then there
;; exists some env, v under which
;; (eval-bdd x env) != (eval-bdd x (update-nth n v env)).

;; Stronger theorems may be proved provided X is ubddp.  At the moment I'll
;; just prove simple conservative stuff.

(defthm q-not-no-new-deps
  (implies (not (nth n (ubdd-deps x)))
           (not (nth n (ubdd-deps (q-not x)))))
  :hints (("goal" :induct (bdd-deps-ind x n))))


(defthm q-and-no-new-deps
  (implies (and (not (nth n (ubdd-deps x)))
                (not (nth n (ubdd-deps y))))
           (not (nth n (ubdd-deps (q-binary-and x y)))))
  :hints (("goal" :induct (2bdd-deps-ind x y n)
           :in-theory (disable (force))
           :expand ((q-binary-and x y)))))

(defthm q-or-no-new-deps
  (implies (and (not (nth n (ubdd-deps x)))
                (not (nth n (ubdd-deps y))))
           (not (nth n (ubdd-deps (q-binary-or x y)))))
  :hints (("goal" :induct (2bdd-deps-ind x y n)
           :in-theory (disable (force))
           :expand ((q-binary-or x y)))))


(defthm q-xor-no-new-deps
  (implies (and (not (nth n (ubdd-deps x)))
                (not (nth n (ubdd-deps y))))
           (not (nth n (ubdd-deps (q-binary-xor x y)))))
  :hints (("goal" :induct (2bdd-deps-ind x y n)
           :in-theory (disable (force))
           :expand ((q-binary-xor x y)))))

(defthm q-iff-no-new-deps
  (implies (and (not (nth n (ubdd-deps x)))
                (not (nth n (ubdd-deps y))))
           (not (nth n (ubdd-deps (q-binary-iff x y)))))
  :hints (("goal" :induct (2bdd-deps-ind x y n)
           :in-theory (disable (force))
           :expand ((q-binary-iff x y)))))

(defthm ubdd-deps-of-atom
  (implies (not (consp x))
           (equal (ubdd-deps x) nil))
  :hints(("Goal" :in-theory (enable ubdd-deps)))
  :rule-classes ((:rewrite :backchain-limit-lst 0)))

; Added by Matt K., 9/28/2013, to get around ACL2(hp) error such as:
;   Error:  Not owner of hash table #<HASH-TABLE :TEST EQL size 3/62 #x30200BB9920D>
; David Rager points out (email, 9/28/2013) that "memoization is known
; not to be thread-safe"; Jared Davis says this too.  (Perhaps this will be
; addressed in the future.)
(local (unmemoize 'ubdd-deps))

(defthm q-ite-no-new-deps
  (implies (and (not (nth n (ubdd-deps x)))
                (not (nth n (ubdd-deps y)))
                (not (nth n (ubdd-deps z))))
           (not (nth n (ubdd-deps (q-ite-fn x y z)))))
  :hints (("goal" :induct (q-ite-deps-ind x y z n)
           :in-theory (disable (force))
           :expand ((q-ite-fn x y z)
                    (:free (a b) (nth n (cons a b)))))))