1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
|
; VL Verilog Toolkit
; Copyright (C) 2008-2015 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@centtech.com>
(in-package "VL")
(include-book "util/bits")
(include-book "util/locations")
(include-book "std/basic/two-nats-measure" :dir :system)
(include-book "ihs/basic-definitions" :dir :system)
(local (include-book "centaur/bitops/ihsext-basics" :dir :system))
(local (include-book "std/lists/take" :dir :system))
(local (include-book "std/lists/repeat" :dir :system))
(local (include-book "std/lists/nthcdr" :dir :system))
(local (std::add-default-post-define-hook :fix))
(local (xdoc::set-default-parents expressions-and-datatypes))
(defxdoc new-expression-representation
:short "Notes about the new expression representation in @(see vl), and how
and why it diverges from the @(see vl2014::expressions)."
:long "<p>In earlier versions of VL such as @(see vl2014), we used a fairly
<see topic='@(url vl2014::expressions)'>simple, AST-like representation</see>.
This representation had some nice features: it kept mutual recursion to a
minimum and made it easy to recur through expressions. However, it also had
some severe weaknesses.</p>
<p>The most significant of these was the lack of type safety. We often
expected expressions to have certain shapes. For instance, we typically
expected that any hierarchical identifier, like @('foo.bar[2].baz'), would
consist of special \"hid pieces\" joined together by certain \"hid dot\" and
\"hid array index\" operators with a certain recursive structure. But the
expression representation did not enforce this, so nothing prevented you from
creating nonsensical expressions like @('foo.(3 + 4).baz').</p>
<p>The ability to create degenerate/nonsense expressions is not necessarily so
bad—just don't create nonsense expressions and what's the a problem? But
the possibility of these degenerate expressions might exist turned out to have
a pervasive impact when writing code to process expressions: VL's many
transforms and utilities always had to defend against such malformed
expressions.</p>
<p>This defense was generally carried out by adding guards or explicit run-time
tests that expressions were sensible. The result was copious error handling
code, difficult and tedious proofs about well-formedness (e.g., see @(see
vl2014::welltyped)), and additional interfacing layers such as the @(see
vl2014::hid-tools) to hide the problem. These layers became ever more complex
as we implemented more of SystemVerilog, e.g., scope expressions and datatype
indexing greatly complicated the handling of hierarchical identifiers.</p>
<p>Reflecting on these problems, and considering our improving ability to
handle @(see mutual-recursion) via macro libraries such as @(see fty::fty) and
@(see defines), we decided to overhaul the expression representation and
replace it with a much more strongly typed, mutually recursive approach.</p>
<p>Our new expression format is much more complex than before. However, it
also intrinsically rules out many expressions that were previously allowed,
which helps to avoid needing error checking code when processing expressions,
and generally makes it easier to write safe expression-processing code.</p>")
(define vl-bitlist-nonempty-fix ((x vl-bitlist-p))
:guard (consp x)
:parents (vl-weirdint)
:short "Fixing function for non-empty @(see vl-bitlist)s."
:long "<p>This is just a technical helper function that supports the @(see
fty::fty-discipline). It is used to ensure that the @('bits') of a
@(see vl-weirdint) are always nonempty.</p>"
:returns (x-fix vl-bitlist-p)
:inline t
(mbe :logic
(if (atom x)
(list :vl-0val)
(vl-bitlist-fix x))
:exec x)
///
(defret consp-of-vl-bitlist-nonempty-fix
(consp x-fix)
:rule-classes :type-prescription)
(defret vl-bitlist-nonempty-fix-idempotent
(implies (consp x)
(equal x-fix (vl-bitlist-fix x)))))
(defxdoc vl-exprsign
:parents (vl-expr)
:short "An indication of an integer expression's signedness (signed or
unsigned)."
:long "<p>On the surface there is not much to this: a literal, wire, or some
other kind of expression might be regarded as either signed or
unsigned. These notes about the signedness of things occur in the
representation of certain expressions like @(see vl-constint) and
@(see vl-weirdint) literals. There is some special handling for the
signedness of ports; see @(see portdecl-sign), but signedness is most
critically used in @(see vl-expr-typedecide).</p>
<p>Note about the word ``<b>type</b>.'' The Verilog-2005 and
SystemVerilog-2012 standards sometimes use the word ``type'' to refer
to the signedness of things. Back in Verilog-2005 there were no fancy
types like structs and unions and the ``type'' of an expression
generally meant whether it was a real number, a signed integer, an
unsigned integer, and maybe other vaguely specified things.</p>
<p>With SystemVerilog-2012 adding much richer variable datatypes (see
@(see vl-datatype)), it gets very confusing to use the word ``type''
in place of signedness. However, this is still done occasionally.
Most notably, it happens in SystemVerilog-2012 Section 11.8.1, which
is adapted from Verilog-2005's Section 5.5.1. This section explains
how to compute the ``type'' of an expression, but in this context
``type'' still means signedness and has little to do with any kind of
fancy SystemVerilog @(see vl-datatype)-like types.</p>
<p>The signedness of wires and variables in VL is now generally part
of their @(see vl-datatype). Historically the way to query a type for
its signedness was to use @('vl-datatype-signedness'). More recently,
in order to add at least some support for non-integer expressions like
@('real') and @('shortreal')s, the signedness of a datatype has been
folded into the more general notion of its @('arithclass'). See in
particular @(see vl-datatype-arithclass).</p>")
(defenum vl-exprsign-p
(:vl-signed :vl-unsigned)
:short "Recognizer for @(see vl-exprsign) symbols."
:parents (vl-exprsign))
(defoption vl-maybe-exprsign
vl-exprsign-p
:parents (vl-exprsign)
///
(defthm type-when-vl-maybe-exprsign-p
(implies (vl-maybe-exprsign-p x)
(and (symbolp x)
(not (equal x t))))
:hints(("Goal" :in-theory (enable vl-maybe-exprsign-p)))
:rule-classes :compound-recognizer))
(deftagsum vl-value
:parents (vl-literal)
:short "The actual value of a @(see vl-literal) expression, e.g., @('42'),
@('3'bxxx'), @(''1'), @('\"foo\"'), @('3.14'), @('45.12ns'), etc."
(:vl-constint
:short "Representation for constant integer literals with no X or Z bits,
e.g., @('42'), @('5'b1'), etc."
:hons t
:layout :tree
:base-name vl-constint
((origwidth posp
:rule-classes :type-prescription
"Subtle; generally should <b>not be used</b>; see below.")
(value natp
:rule-classes :type-prescription
"The most important part of a constant integer. Even
immediately upon parsing the value has already been determined
and is available to you as an ordinary natural number."
:reqfix (acl2::loghead (pos-fix origwidth) value))
(origsign vl-exprsign-p
"Subtle; generally should <b>not be used</b>; see below.")
(wasunsized booleanp
:rule-classes :type-prescription
"Set to @('t') by the parser for unsized constants like @('5')
and @(''b0101'), but not for sized ones like @('4'b0101')."))
:require (unsigned-byte-p origwidth value)
:long "<h3>Detailed Explanation</h3>
<p>Constant integers are produced from source code constructs like
@('5'), @('4'b0010'), and @('3'h0').</p>
<p>Note that the value of a constant integer is never negative. In
Verilog there are no negative literals; instead, an expression like
@('-5') is basically parsed the same as @('-(5)'), so the negative
sign is not part of the literal. See Section 3.5.1 of the
Verilog-2005 standard.</p>
<p>The @('origwidth') and @('origsign') fields are subtle and you
usually <b>should not</b> be looking at the @('origwidth') and
@('origsign') of an expression unless you have really studied how
sizing works in and you really know what you are doing.</p>
<p>These fields indicate the <i>original</i> width and signedness of
the literal as specified in the source code. For instance, if the
source code contains @('8'sd 65'), then we will get a value whose
@('origwidth') is 8 and whose @('origsign') is @(':vl-signed.')
<b>However</b>, in general, the process for sizing Verilog
expressions can effectively ``change'' the widths and types of the
operands within that expression. For instance, if @('a') and @('b')
are unsigned 10-bit wires and we have:</p>
@({
assign a = b + 3'sb1;
})
<p>Then even though @('3'sb1') looks like a signed 3-bit integer, the
sizing process will convert it into a 10-bit unsigned number! The
takeaway: you can't really rely on the original size and signedness
to tell you the real story, so unless you're implementing the sizing
algorithm you should probably avoid them.</p>
<p>We insist that @('0 <= value <= 2^origwidth') for every constant
integer. If our @(see lexer) encounters something ill-formed like
@('3'b 1111'), it emits a warning and truncates the value to the
specified width as required by Section 3.5.1 (page 10) of the
Verilog-2005 standard and Section 5.7.1 (page 37) of the
SystemVerilog standard.</p>
<p>Note that in Verilog, unsized integer constants like @('5') or
@(''b101') have an implementation-dependent size of at least 32 bits.
Early versions of VL tried to treat such numbers in an abstract way,
saying they had \"integer size\". But we eventually decided that
this was too error-prone and we now instead act like a 32-bit
implementation even at the level of our lexer. This conveniently
makes the width of a constant integer just a positive number.</p>
<p>There is some risk to this. Certain expressions may produce
different results on 32-bit versus, say, 64-bit implementations.
Because of this, we added the @('wasunsized') field so that we might,
some day, statically check for problematic uses of unsized
constants.</p>
<p>All constints are automatically created with @(see hons). This is
probably pretty trivial, but it seems nice. For instance, the
constant integers from 0-32 are probably used thousands of times
throughout a design for bit-selects and wire ranges, so sharing their
memory may be useful.</p>")
(:vl-weirdint
:short "Representation for constant integer literals with any X or Z bits,
e.g., @('4'b11xx')."
:hons t
:layout :tree
:base-name vl-weirdint
((bits vl-bitlist-p
"An MSB-first list of the four-valued Verilog bits making up
this constant's value; see @(see vl-bit-p)."
:reqfix (vl-bitlist-nonempty-fix bits))
(origsign vl-exprsign-p
"Subtle; generally should <b>not be used</b>; see below.")
(wasunsized booleanp
:rule-classes :type-prescription
"Did this constant have an explicit size?"))
:require (consp bits)
:long "<h3>Detailed Explanation</h3>
<p>Weird integers are produced by source code constructs like
@('1'bz'), @('3'b0X1'), and so on.</p>
<p>Weirdints are mostly like @(see vl-constint)s except that instead
of having a natural number @('value') they have @('bits'), a list of
four-valued @(see vl-bit)s, which are always represented in MSB-first
order.</p>
<p>The @('origsign') and @('wasunsized') fields are analogous to
those from a @(see vl-constint); see the discussion there for
details.</p>
<p>Unlike a constint, a weirdint has no @('origwidth'). Instead, its
original width is implicitly just the length of its bits. When our
@(see lexer) encounters a weirdint like @('5'b1x'), it automatically
extends it to the desired width; see for instance @(see
vl-correct-bitlist). Note that, as with constints, you usually
<b>should not</b> be looking at this length or at the @('origsign')
field, because these original values are not necessarily the correct
post-sizing sizes and signedness.</p>
<p>Like constinsts, all weirdints are automatically constructed with
@(see hons). This may not be worthwhile since there are probably
usually not too many weirdints, but by the same reasoning it
shouldn't be too harmful.</p>")
(:vl-extint
:short "Representation for unbased, unsized integer literals, viz. @(''0'),
@(''1'), @(''x'), and @(''z')."
:hons t
:layout :tree
:base-name vl-extint
((value vl-bit-p "The kind of extended integer this is."))
:long "<p>We call SystemVerilog's fancy integer literals like @(''1')
<i>extension integers</i> and represent them with just their @(see
vl-bit) value. Since there are only four distinct extension
integers, we always create them with @(see hons).</p>")
(:vl-real
:short "Representation of real (floating point) literals like @('3.41e+12')."
:layout :tree
:base-name vl-real
((value stringp
:rule-classes :type-prescription
"The actual characters found in the source code, i.e., it might be
a string such as @('\"3.41e+12\"')."))
:long "<p>We have almost no support for working with real numbers. You
should probably not rely on our current representation, since we will
almost certainly want to change it as soon as we want to do anything
with real numbers.</p>")
(:vl-time
:short "Representation of time amounts like @('45.12ns')."
:base-name vl-time
:hons t
:layout :tree
((quantity stringp
:rule-classes :type-prescription
"An ACL2 string with the amount. In practice, the amount should
match either @('unsigned_number') or @('fixed_point_number'),
e.g., @('\"3\"') or @('\"45.617\"'). We don't try to process
this further because (1) we don't expect it to matter for much,
and (2) ACL2 doesn't really support fixed point numbers.")
(units vl-timeunit-p
"The kind of time unit this is, e.g., seconds, milliseconds,
microseconds, ..."))
:long "<p>We barely support this. You should probably not rely on our
current representation, since we will almost certainly want to change
it as soon as we do anything with time units.</p>")
(:vl-string
:short "Representation for string literals like @('\"hello\"')."
:base-name vl-string
:layout :tree
((value stringp
:rule-classes :type-prescription
"An ordinary ACL2 string where, e.g., special sequences like
@('\\n') and @('\\t') have been resolved into real newline and tab
characters, etc."))))
(fty::deflist vl-valuelist
:elt-type vl-value
:elementp-of-nil nil
:parents (vl-value))
(defenum vl-randomqualifier-p
(nil
:vl-rand
:vl-randc)
:parents (vl-structmember)
:short "Random qualifiers that can be put on struct or union members.")
(defenum vl-coretypename-p
(;; integer vector types, i put these first since they're common
:vl-logic
:vl-reg
:vl-bit
;; integer atom types:
:vl-byte
:vl-shortint
:vl-int
:vl-longint
:vl-integer
:vl-time
;; non integer types:
:vl-shortreal
:vl-real
:vl-realtime
;; misc core datatypes
:vl-string
:vl-chandle
:vl-event
;; it's convenient to include void here even though it's not part
;; of the grammar for data_type
:vl-void
;; it's convenient to include untyped, sequence, and property here,
;; even though they aren't part of the grammar for data_type, to
;; help simplify the representation of property/sequence ports.
:vl-sequence
:vl-property
:vl-untyped
)
:parents (vl-coretype)
:short "Basic kinds of datatypes."
:long "<p>Our <i>core types</i> basically correspond to the following small
subset of the valid @('data_type')s:</p>
@({
data_type_or_void ::= data_type | 'void'
data_type ::=
integer_vector_type [signing] { packed_dimension }
| integer_atom_type [signing]
| non_integer_type
| 'string'
| 'chandle'
| 'event'
| <non core types>
})
<p>We include certain additional keywords here to represent @('void'),
and also for @('property'), @('sequence'), and @('untyped') (which can
occur in the property/sequence ports for SystemVerilog assertions).
This is mostly a convenience that allows us to unify the
representation of types in other places throughout the parse
tree.</p>")
(defxdoc vl-scopename
:parents (vl-scopeexpr-colon)
:short "Leading names that can be used in a scope operator (::), viz.
@('local'), @('unit'), or a user-defined name.")
(define vl-scopename-p (x)
:parents (vl-scopename)
:short "Recognizer for scope names."
:returns bool
(or (eq x :vl-local)
(eq x :vl-$unit)
(stringp x))
///
(defthm vl-scopename-p-when-stringp
(implies (stringp x)
(vl-scopename-p x))
:hints(("Goal" :in-theory (enable vl-scopename-p)))))
(define vl-scopename-fix ((x vl-scopename-p))
:parents (vl-scopename)
:short "Fixing function for @(see vl-scopename)s."
:returns (name vl-scopename-p)
:inline t
(mbe :logic (if (vl-scopename-p x)
x
:vl-local)
:exec x)
///
(defthm vl-scopename-fix-when-vl-scopename-p
(implies (vl-scopename-p x)
(equal (vl-scopename-fix x) x))))
(defsection vl-scopename-equiv
:parents (vl-scopename)
:short "Equivalence relation for @(see vl-scopename)s."
(deffixtype vl-scopename
:pred vl-scopename-p
:fix vl-scopename-fix
:equiv vl-scopename-equiv
:define t
:forward t))
(fty::deflist vl-scopenamelist
:elt-type vl-scopename
:elementp-of-nil nil
:parents (vl-scopename)
///
(defthm vl-scopenamelist-p-when-string-listp
(implies (string-listp x)
(vl-scopenamelist-p x))
:hints(("Goal" :in-theory (enable vl-scopenamelist-p)))))
(defsection vl-hidname
:parents (vl-index)
:short "Leading names that can be used in a @(see vl-hidindex): @('$root') or
a user-defined name.")
(define vl-hidname-p (x)
:parents (vl-hidname)
:short "Recognizer for hid names."
:returns bool
(or (eq x :vl-$root)
(stringp x)))
(define vl-hidname-fix ((x vl-hidname-p))
:parents (vl-hidname)
:returns (name vl-hidname-p)
:short "Fixing function for @(see vl-hidname)s."
:inline t
(mbe :logic (if (vl-hidname-p x)
x
:vl-$root)
:exec x)
///
(defthm vl-hidname-fix-when-vl-hidname-p
(implies (vl-hidname-p x)
(equal (vl-hidname-fix x) x))))
(defsection vl-hidname-equiv
:parents (vl-hidname)
:short "Equivalence relation for @(see vl-hidname)s."
(deffixtype vl-hidname
:pred vl-hidname-p
:fix vl-hidname-fix
:equiv vl-hidname-equiv
:define t
:forward t))
(fty::deflist vl-hidnamelist
:elt-type vl-hidname
:elementp-of-nil nil
:parents (vl-hidname))
(defval *vl-unary-ops*
:parents (vl-unary)
:short "Table of unary operator internal symbols and their source code text."
'((:vl-unary-plus . "+")
(:vl-unary-minus . "-")
(:vl-unary-lognot . "!")
(:vl-unary-bitnot . "~")
(:vl-unary-bitand . "&")
(:vl-unary-nand . "~&")
(:vl-unary-bitor . "|")
(:vl-unary-nor . "~|")
(:vl-unary-xor . "^")
(:vl-unary-xnor . "~^")
(:vl-unary-preinc . "++")
(:vl-unary-predec . "--")
(:vl-unary-postinc . "++")
(:vl-unary-postdec . "--")))
(make-event
`(defenum vl-unaryop-p
,(strip-cars *vl-unary-ops*)
:parents (vl-unary)
:short "Recognizer for basic unary operators."))
(define vl-unaryop-string ((x vl-unaryop-p))
:parents (vl-unary)
:short "Get the source code text for a basic unary operator."
:returns (str stringp :rule-classes :type-prescription)
:prepwork ((local (defthm vl-unaryop-fix-forward
(vl-unaryop-p (vl-unaryop-fix x))
:rule-classes
((:forward-chaining :trigger-terms ((vl-unaryop-fix x)))))))
(cdr (assoc (vl-unaryop-fix x) *vl-unary-ops*)))
(defval *vl-binary-ops*
:parents (vl-binary)
:short "Table of binary operator internal symbols and their source code text."
'((:vl-binary-plus . "+")
(:vl-binary-minus . "-")
(:vl-binary-times . "*")
(:vl-binary-div . "/")
(:vl-binary-rem . "%")
(:vl-binary-eq . "==")
(:vl-binary-neq . "!=")
(:vl-binary-ceq . "===")
(:vl-binary-cne . "!==")
(:vl-binary-wildeq . "==?")
(:vl-binary-wildneq . "!=?")
(:vl-binary-logand . "&&")
(:vl-binary-logor . "||")
(:vl-binary-power . "**")
(:vl-binary-lt . "<")
(:vl-binary-lte . "<=")
(:vl-binary-gt . ">")
(:vl-binary-gte . ">=")
(:vl-binary-bitand . "&")
(:vl-binary-bitor . "|")
(:vl-binary-xor . "^")
(:vl-binary-xnor . "~^")
(:vl-binary-shr . ">>")
(:vl-binary-shl . "<<")
(:vl-binary-ashr . ">>>")
(:vl-binary-ashl . "<<<")
(:vl-binary-assign . "=")
(:vl-binary-plusassign . "+=")
(:vl-binary-minusassign . "-=")
(:vl-binary-timesassign . "*=")
(:vl-binary-divassign . "/=")
(:vl-binary-remassign . "%=")
(:vl-binary-andassign . "&=")
(:vl-binary-orassign . "|=")
(:vl-binary-xorassign . "^=")
(:vl-binary-shlassign . "<<=")
(:vl-binary-shrassign . ">>=")
(:vl-binary-ashlassign . "<<<=")
(:vl-binary-ashrassign . ">>>=")
(:vl-implies . "->")
(:vl-equiv . "<->")))
(make-event
`(defenum vl-binaryop-p
,(strip-cars *vl-binary-ops*)
:parents (vl-binary)
:short "Recognizer for basic binary operators."))
(define vl-binaryop-string ((x vl-binaryop-p))
:parents (vl-binary)
:short "Get the source code text for a basic binary operator."
:returns (str stringp :rule-classes :type-prescription)
:prepwork ((local (defthm vl-binaryop-fix-forward
(vl-binaryop-p (vl-binaryop-fix x))
:rule-classes
((:forward-chaining :trigger-terms ((vl-binaryop-fix x)))))))
(cdr (assoc (vl-binaryop-fix x) *vl-binary-ops*)))
(defenum vl-specialkey-p
(:vl-null
;; :vl-this
;; :vl-super
;; :vl-local
;; :vl-default
:vl-$
;; :vl-$root
;; :vl-$unit
:vl-emptyqueue
;; To make any SystemVerilog-2012 delay_value just an expression, it's
;; convenient to add 1step here.
:vl-1step
)
:parents (vl-special))
(defenum vl-leftright-p
(:left :right)
:parents (vl-stream)
:short "The direction for streaming operators: @(':left') for @('<<') or
@(':right') for @('>>').")
(defenum vl-evatomtype-p
(:vl-noedge
:vl-edge
:vl-posedge
:vl-negedge)
:parents (vl-evatom-p)
:short "Type of an item in an event control list."
:long "<p>Any particular atom in the event control list might have a
@('posedge'), @('negedge'), @('edge'), or have no edge specifier at all, e.g.,
for plain atoms like @('a') and @('b') in @('always @(a or b)').</p>")
(local (std::set-returnspec-mrec-default-hints nil))
(local (in-theory (disable (:t acl2::nil-fn)
default-car
default-cdr
default-+-2
default-+-1
o< o-finp
acl2::nfix-when-not-natp
(:t acl2::acl2-count-of-consp-positive))))
(local (xdoc::set-default-parents))
(local (defthm tag-of-cons
(equal (tag (cons x y)) x)
:hints(("Goal" :in-theory (enable tag)))))
(deftypes expressions-and-datatypes
:parents (syntax)
:short "Representation of expressions, datatypes, and other related,
mutually recursive concepts."
:long "<p>SystemVerilog has a very rich expression language. For
instance:</p>
<ul>
<li>It has many kinds of literals, including integer literals that can
be sized and unsized, ``weird'' integers like @('4'10xz'), infinitely
extended integers like @(''0'), reals, times, strings, etc. See @(see
vl-literal).</li>
<li>It has a rich operand syntax that allows for scoping, indexing
into the module hierarchy and structures, and for many kinds of
bit/range selects into wires, arrays, etc. See @(see vl-index).</li>
<li>It has many familiar C-like operators (@('+'), @('&'), etc.) and
numerous extended C-like operators (@('==='), @('!=?'), @('>>>'),
etc.) See @(see vl-unary), @(see vl-binary), and @(see vl-qmark).</li>
<li>It has certain casting and function call operators that allow for
the use of <b>datatypes directly in expressions</b>, which makes
expressions and datatypes <b>mutually recursive</b> concepts.</li>
<li>It has several esoteric operators like @('inside') and the
streaming operators, which have their own sub-syntax of sorts.</li>
<li>It has nested attributes like <tt>(* foo, bar = 5 *)</tt> that can
be attached to almost any expression as annotations for tools. See
@(see vl-atts).</li>
</ul>
<p>These expressions occur pretty much everywhere throughout a
SystemVerilog design—ports, parameters, assignments, instances,
statements, you name it. This complexity and frequency of usage makes
a good representation of expressions especially important.</p>
<p>A major differences between @(see vl2014) and @(see vl) is that VL
uses a new, more mutually recursive, and more strongly typed
expression representation. See @(see new-expression-representation)
for some discussion about the motivation for this change.</p>
<p>Note that there are many useful functions for working with
expressions in @(see mlib). See most especially @(see expr-tools)
which contains many basic functions.</p>"
:post-pred-events
((local (defthm impossible-cars-of-vl-expr
(implies (vl-expr-p x)
(and (not (equal (car x) :vl-range))
(not (equal (car x) :vl-plusminus))
(not (equal (car x) :none))))
:hints (("goal" :expand ((vl-expr-p x))))))
(local (defthm car-is-vl-range
(implies (vl-range-p x)
(equal (car x) :vl-range))
:hints (("goal" :expand ((vl-range-p x))))
:rule-classes :forward-chaining))
(local (defthm car-is-vl-plusminus
(implies (vl-plusminus-p x)
(equal (car x) :vl-plusminus))
:hints (("goal" :expand ((vl-plusminus-p x))))
:rule-classes :forward-chaining))
(local (defthm hidexpr-car-not-colon
(implies (vl-hidexpr-p x)
(not (equal (car x) :colon)))
:hints(("Goal" :in-theory (enable vl-hidexpr-p
vl-hidindex-p)))))
(local (defthm hidexpr-car-not-paramscolon
(implies (vl-hidexpr-p x)
(not (equal (car x) :paramscolon)))
:hints(("Goal" :in-theory (enable vl-hidexpr-p
vl-hidindex-p))))))
; -----------------------------------------------------------------------------
;
; ** Top-Level Expressions **
;
; -----------------------------------------------------------------------------
(deftagsum vl-expr
:short "Representation of a single SystemVerilog expression."
:long "<p>For more general background, see @(see expressions-and-datatypes)
and @(see new-expression-representation). Also note that there are
many functions for working with expressions throughout @(see mlib);
see especially @(see expr-tools).</p>"
:measure (two-nats-measure (acl2-count x) 50)
:base-case-override :vl-literal
:layout :tree
(:vl-literal
:base-name vl-literal
:short "A literal value of any kind, such as integer constants, string
literals, time literals, real numbers, etc."
((val vl-value
"The guts of the literal. This explains what kind of literal it
is, its value, and has other related information.")
(atts vl-atts-p
"Any attributes associated with this literal. These are generally
@('nil') upon parsing since the Verilog or SystemVerilog grammars
don't really provide anywhere for <tt>(* foo = bar, baz *)</tt>
style attributes to be attached to literals. However, we found
that it was convenient for every kind of expression to support
attributes, so we include them for internal use.")))
(:vl-index
:base-name vl-index
:short "A reference to some part of something that is somewhere in the
design. Could be a simple wire name like @('foo'), or something
much fancier with scoping, hierarchy, indexing, and part-selects
like @('ape::bat::cat.dog[3][2][1].elf[6][5][10:0]')."
((scope vl-scopeexpr
"Captures the scoping that leads to some object in the
design. This captures the @('ape::bat::cat.dog[3][2][1].elf')
part of the example above.")
(indices vl-exprlist-p
"Captures any subsequent indexing once we get to the thing
pointed to by @('scope'). This captures the @('[6][5]') part
of the example above.")
(part vl-partselect-p
"Captures any subsequent part-selection once we get past all of
the indexing. This captures the @('[10:0]') part of the
example above.")
(atts vl-atts-p
"Any associated attributes. BOZO where would you put such
attributes?"))
:long "<p>SystemVerilog provides a very rich syntax for referring to things
in different scopes and throughout the module hierarchy. Any such
reference—whether it is a very simple identifier like @('foo')
or a very complex scoped, hierarchical, indexed, mess of
indirection—is ultimately represented as a single
@('vl-index') expression.</p>")
(:vl-unary
:base-name vl-unary
:short "A simple unary operator applied to some argument, like @('&a') or @('-b')."
((op vl-unaryop-p "The operator being applied.")
(arg vl-expr-p "The argument to the operator.")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-binary
:base-name vl-binary
:short "A simple binary operator applied to some arguments, like @('a +
b') or @('a & b')."
((op vl-binaryop-p "The operator being applied.")
(left vl-expr-p "The left-hand side argument, e.g., @('a') in @('a + b').")
(right vl-expr-p "The right-hand side argument, e.g., @('b') in @('a + b').")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-qmark
:base-name vl-qmark
:short "A ternary/conditional operator, e.g., @('a ? b : c')."
((test vl-expr-p "The test expression, e.g., @('a').")
(then vl-expr-p "The true-branch expression, e.g., @('b').")
(else vl-expr-p "The else-branch expression, e.g., @('c').")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-concat
:base-name vl-concat
:short "A basic concatenation expression, e.g., @('{a, b, c}')."
((parts vl-exprlist-p "The expressions being concatenated together, e.g., the
expressions for @('a'), @('b'), and @('c'), in order.")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes."))
:long "<p>BOZO: Some day, investigate whether we can require the
@('parts') to be non-empty.</p>")
(:vl-multiconcat
:base-name vl-multiconcat
:short "A multiple concatenation (a.k.a. replication) expression, e.g., @('{4{a,b,c}}')."
((reps vl-expr-p "The replication amount, e.g., @('4').")
(parts vl-exprlist-p "The expressions being concatenated together, e.g, the
expressions for @('a'), @('b'), and @('c'), in order.")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes."))
:long "<p>BOZO: Some day, investigate whether we can require the
@('parts') to be non-empty.</p>")
(:vl-mintypmax
:base-name vl-mintypmax
:short "A minimum/typical/maximum delay operator, e.g., @('3 : 4 : 5')."
((min vl-expr-p "The minimum delay, e.g., @('a').")
(typ vl-expr-p "The typical delay, e.g., @('b').")
(max vl-expr-p "The maximum delay, e.g., @('c').")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-call
:base-name vl-call
:short "A call of a function or a system function, e.g., @('myencode(foo,
3)') or @('$bits(foo_t)')."
:long "<p>SystemVerilog allows named arguments and a combination of named
and ordered arguments. In general, a function call can have some
unnamed (plain) arguments followed by some named arguments.</p>"
((name vl-scopeexpr-p
"The function being called. Typically this is just the function
name, but in general it is possible to call functions from
other scopes and other places in the hierarchy, say
@('foo::top.bar.myencode(baz, 3)'), so to be sufficiently
general we represent this as a @(see vl-scopeexpr).")
(plainargs vl-maybe-exprlist-p
"The unnamed arguments to the function, in order.")
(namedargs vl-call-namedargs-p
"The named arguments to the function.")
(typearg vl-maybe-datatype-p
"Most function calls just take expressions as arguments, in
which case @('typearg') will be @('nil'). However, certain
system functions can take a datatype argument. For instance,
you can write @('$bits(struct { ...})'). In such cases, we put
that datatype here.")
(systemp booleanp :rule-classes :type-prescription
"Indicates that this is a system function like @('$bits') or
@('$display') instead of a user-defined function like
@('myencode').")
(atts vl-atts-p
"Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-stream
:base-name vl-stream
:short "A streaming concatenation (pack or unpack) operation, e.g.,
@('{<< 16 {a,b,c}}')."
((dir vl-leftright-p
"The kind of stream operator: @(':left') for @('<<') or
@(':right') for @('>>').")
(size vl-slicesize-p
"The slice size or an indication that there is no slice size.
For instance, the @('16') in @('{<< 16 {a,b,c}}').")
(parts vl-streamexprlist-p
"The @('stream_expression')s that make up the @('stream_concatenation'),
i.e., @('a'), @('b'), and @('c') for @('{<< 16 {a,b,c}}'). These
aren't just ordinary expressions since they can have @('with')
clauses.")
(atts vl-atts-p
"Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-cast
:base-name vl-cast
:short "A casting expression, e.g., @('int'(2.0 * 3.0)')."
((to vl-casttype-p "The new type/size/signedness/constness to cast the
argument to, e.g., @('int') above.")
(expr vl-expr-p "The expression being cast to something else, e.g.,
@('2.0 * 3.0') above.")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-inside
:base-name vl-inside
:short "A set membership @('inside') operator, e.g., @('a inside { 5, [16:23] }')."
((elem vl-expr-p "The element to test, e.g., @('a') above.")
(set vl-valuerangelist-p "The values and ranges making up the set, e.g.,
@('5') and @('[16:23]').")
(atts vl-atts-p "Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-tagged
:base-name vl-tagged
:short "A tagged union expression, e.g., @('tagged Some (12+34)') or @('tagged None')."
((tag stringp :rule-classes :type-prescription
"The tag name, e.g., @('Some') or @('None') above.")
(expr vl-maybe-expr-p
"The expression being tagged.")
(atts vl-atts-p
"Any <tt>(* foo = bar, baz *)</tt> style attributes.")))
(:vl-pattern
:base-name vl-pattern
:short "A (possibly typed) assignment pattern expression, for instance,
@(''{a:1, b:2}') or @('foo_t'{head+1, tail-1}')."
((pat vl-assignpat-p
"The inner part of the pattern, i.e., everything but the type.")
(pattype vl-maybe-datatype-p
"The type for this assignment pattern, if applicable. For
instance, @('foo_t') in the example above.")
(atts vl-atts-p
"Any <tt>(* foo = bar, baz *)</tt> style attributes."))
:long "<p>This essentially corresponds to the SystemVerilog-2012 grammar
rule for @('assignment_pattern_expression'):</p>
@({
assignment_pattern_expression ::=
[assignment_pattern_expression_type] assignment_pattern
})")
(:vl-special
:base-name vl-special
:short "Representation of a few special things like @('$'), @('null'), etc."
((key vl-specialkey-p)
(atts vl-atts-p
"Any attribute associated with this expression. As with literals,
these attributes are not accessible in the Verilog or
SystemVerilog grammars. However, it is generally convenient to be
able to associate attributes with any expression, so we include an
attributes field in our internal representation.")))
(:vl-eventexpr
:base-name vl-eventexpr
:short "Representation of an event expression, e.g., @('@(posedge foo)')."
:long "<p>This is useful for, e.g., @('$past') calls like:</p>
@({
$past(a,,,@(posedge clock))
})"
((atoms vl-evatomlist)
(atts vl-atts-p)))
)
(fty::deflist vl-exprlist
:measure (two-nats-measure (acl2-count x) 10)
:elt-type vl-expr
:elementp-of-nil nil
;; true-listp to get nice update identities like
;; (vl-expr-update-subexprs x (vl-expr->subexprs x)) = (vl-expr-fix x)
:true-listp t
:parents (vl-expr))
(defoption vl-maybe-expr vl-expr
:measure (two-nats-measure (acl2-count x) 100)
:parents (vl-expr))
(fty::deflist vl-maybe-exprlist
:measure (two-nats-measure (acl2-count x) 10)
:elt-type vl-maybe-expr
:elementp-of-nil t
:true-listp t
:parents (vl-expr))
(fty::defalist vl-call-namedargs
:measure (two-nats-measure (acl2-count x) 10)
:key-type stringp
:val-type vl-maybe-expr
:true-listp t
:short "Representation of any named arguments of a function call."
:long "<p>This is really the same type as @(see vl-atts), but we use a different
name because the purposes they're used for are so different.</p>")
(fty::defalist vl-atts
:measure (two-nats-measure (acl2-count x) 10)
:key-type stringp
:val-type vl-maybe-expr
:true-listp t
;; Note: In the docs here we use <tt>...</tt> and <code>...</code> instead
;; of @('...') and @({...}) to avoid having XDOC insert hyperlinks to the
;; '*' function when it sees the '(*' at the start of these attributes.
:short "Representation of <tt>(* foo = 3, bar *)</tt> style attributes."
:long "<p>Verilog-2005 and SystemVerilog-2012 allow many constructs, (e.g.,
module instances, wire declarations, assignments, subexpressions,
and so on) to be annotated with <b>attributes</b>.</p>
<p>Each individual attribute can either be a single key with no
value (e.g., @('baz') above), or can have the form @('key = value').
The keys are always identifiers, and the values (if provided) are
expressions. Both Verilog-2005 and SystemVerilog-2012 agree that an
attribute with no explicit value is to be treated as having value
@('1').</p>
<h3>Representation</h3>
<p>We represent attributes as alists mapping names to their values.
We use ordinary ACL2 strings to represent the keys. These strings
are typically honsed to improve memory sharing. Each explicit value
is represented by an ordinary @(see vl-expr-p), and keys with no
values are bound to @('nil') instead.</p>
@(def vl-atts-p)
<h3>Size/Types of Attribute Values</h3>
<p>Verilog-2005 doesn't say anything about the types of attribute
expressions. SystemVerilog-2012 says (Section 5.12) that the type
of an attribute with no value is @('bit'), and that otherwise its
type is the (presumably self-determined) type of the expression.
But this is not really an adequate spec. Consider for instance an
attribute like:</p>
<code>
(* foo = a + b *)
</code>
<p>Since attributes live in their own namespace, it isn't clear what
@('a') and @('b') refer to here. For instance, are they wires in
this module, or perhaps global values that are known by the Verilog
tool. It doesn't seem at all clear what the type or size of such an
expression is supposed to be.</p>
<p>Well, no matter. Attributes are not used for much and if their
sizes and types aren't well specified, that's not necessarily any
kind of problem. We generally expect to be able to ignore
attributes and do not expect to need to size them or determine their
types.</p>
<h3>Nesting Attributes</h3>
<p>Note that both Verilog-2005 and SystemVerilog-2012 prohibit the
nesting of attributes. That is, expressions like the following are
not allowed:</p>
<code>
(* foo = a + (* bar *) b *)
</code>
<p>VL's parser enforces this restriction and will not allow
expressions to have nested attributes; see @(see
vl-parse-0+-attribute-instances). However, we make <b>no such
restriction</b> internally—our @(see vl-expr-p) structures can
have attributes nested to any arbitrary depth.</p>
<h3>Redundant and Conflicting Attributes</h3>
<p>When the same attribute name is given repeatedly, both
Verilog-2005 and SystemVerilog-2012 agree that the last occurrences
of the attribute should be used. That is, the value of @('foo')
below should be 5:</p>
<code>
(* foo = 1, foo = 5 *)
assign w = a + b;
</code>
<p>VL's parser properly handles this case. It issues warnings when
duplicate attributes are used, and always produces @('vl-atts-p')
structures that are free from duplicate keys, and where the entry
for each attribute corresponds to the last occurrence of it; see
@(see vl-parse-0+-attribute-instances).</p>
<p>Internally we make <b>no such restriction</b>. We treat
@('vl-atts-p') structures as ordinary alists.</p>
<h3>Internal Use of Attributes by VL</h3>
<p>Certain VL transformations may occasionally add attributes
throughout modules. For instance, the @(see make-implicit-wires)
transformation will add @('VL_IMPLICIT') attributes to the wire
declarations that added implicitly.</p>
<p>We once tried to record the different kinds of attributes that VL
used here, but that list became quickly out of date as we forgot to
maintain it, so we no longer try to do this. As a general rule,
attributes added by VL <i>should</i> be prefixed with @('VL_'). In
practice, we may sometimes forget to follow this rule.</p>")
; -----------------------------------------------------------------------------
;
; ** Ranges, Dimensions **
;
; -----------------------------------------------------------------------------
(defprod vl-range
:parents (syntax)
:measure (two-nats-measure (acl2-count x) 100)
:short "A simple @('[msb:lsb]') style range."
:tag :vl-range
:layout :tree
((msb vl-expr-p "Most significant bit of the range.")
(lsb vl-expr-p "Least significant bit of the range."))
:long "<p>Ranges are discussed in Section 7.1.5 of the Verilog-2005
standard. Typically a range looks like @('[msb:lsb]'). This same
syntax is used in many places, such as part selects, @('with')
expressions in streaming expressions, etc.</p>
<p>In general, the @('msb') is not required to be greater than
@('lsb'), and neither index is required to be zero. However, for
instance, if a wire is declared with a range such as @('[7:0]'),
then it should be selected from using ranges such as @('[3:0]') and
attempting to select from it using a \"backwards\" part-select such
as @('[0:3]') is an error.</p>
<p>See @(see range-tools) for many functions for working with
ranges.</p>")
(defoption vl-maybe-range vl-range
:measure (two-nats-measure (acl2-count x) 110)
:parents (vl-range))
(defflexsum vl-dimension
:parents (syntax)
:measure (two-nats-measure (acl2-count x) 105)
:short "Representation of a single packed or unpacked dimension. These
could be a range like @('[3:0]') or something more exotic, like
@('[]'), @('[*]'), or @('[logic [3:0]]')."
;; [Jared] This was originally called vl-packeddimension and lacked the
;; star, datatype, and queue cases. When adding the new dimension types, I
;; originally considered distinguishing between packed and other
;; dimensions, adding a vl-variabledimension type here. This seemed to
;; bring a lot of trouble for no gain. When processing dimensions in any
;; real way, the question is always: "are these dimensions all nicely
;; resolved simple ranges?" so even with just packed_dimension, you already
;; have unsized dimensions and unresolved ranges to handle as error cases.
;; It's generally easy to extend these error cases to queues and
;; associative dimensions as well.
(:unsized
:short "An unsized dimension, e.g., @('[]')."
:long "<p>See SystemVerilog-2012 section 7.5. These are for dynamic
arrays whose size can be changed at runtime.</p>"
:cond (eq x :vl-unsized-dimension)
:fields nil
:ctor-body ':vl-unsized-dimension)
(:star
:short "The @('associative_dimension') @('[*]')."
:long "<p>See SystemVeriog-2012 section 7.8.1 on the wildcard index type
for associative (sparse) arrays. This allows the array to be
indexed by any integer-valued expression of arbitrary size.</p>"
:cond (eq x :vl-star-dimension)
:fields nil
:ctor-body ':vl-star-dimension)
(:datatype
:short "An @('associative_dimension') based on a data type."
:long "<p>See SystemVerilog-2012 section 7.8 on Associative Arrays. The
type is an index type for a sparse array.</p>"
:cond (eq (tag x) :vl-type-dimension)
:fields ((type :acc-body (cdr x)
:type vl-datatype
:acc-name vl-dimension->type))
:ctor-body (cons :vl-type-dimension type))
(:queue
:short "A queue dimension, e.g., @('[$]') or @('[$ : 5]')"
:cond (eq (tag x) :vl-queue-dimension)
:fields ((maxsize :acc-body (cdr x)
:acc-name vl-dimension->maxsize
:type vl-maybe-expr-p
:doc "For bounded queues, this is the maximum index of
any element in the queue, e.g., it is the @('5')
in @('[$ : 5]'). For unbounded queues, this is
just @('nil')."))
:ctor-body (cons :vl-queue-dimension maxsize))
(:range
:short "A dimension that is a range, e.g., @('[3:0]') or @('[3]')."
:cond t
:fields ((range :acc-body x
:type vl-range
:acc-name vl-dimension->range
:doc "The whole dimension as an atomic @(see vl-range).
Note (SystemVerilog-2012 page 109): unpacked
dimensions like @('[size]') are the same as
@('[0:size-1]'). We therefore convert them into
ranges at parse-time."))
:ctor-body range
:ctor-name vl-range->dimension
:extra-binder-names (msb lsb)
:long "<p>Note that the @(see b*) binder sets up extra bindings for
@('.msb') and @('.lsb'), so you can typically access the guts of
the interior range directly.</p>"))
(fty::deflist vl-dimensionlist
:elt-type vl-dimension
:measure (two-nats-measure (acl2-count x) 10)
:elementp-of-nil nil
:parents (vl-dimension))
(defoption vl-maybe-dimension vl-dimension
:measure (two-nats-measure (acl2-count x) 110)
:parents (vl-dimension))
; -----------------------------------------------------------------------------
;
; ** Index Expressions **
;
; -----------------------------------------------------------------------------
(defprod vl-hidindex
:parents (vl-index)
:short "Representation of a leading piece of a hierarchical reference to
something, perhaps with associated indices."
:measure (two-nats-measure (acl2-count x) 110)
:measure-debug t
:layout :tree
((name vl-hidname "Leading name before the dot.")
(indices vl-exprlist-p "Any associated indices."))
:long "<p>A @('vl-hidindex') only makes sense in the context of a larger
@(see vl-hidexpr). Consider an hierarchical indexing expression
like</p>
@({ cat . (dog [3][2][1]) . elf) })
<p>The @('dog[3][2][1]') part of this will be represented by a
@('vl-hidindex') whose @('name') is @('dog') and whose indices are
the expressions for @('3'), @('2'), and @('1').</p>
<p>The @('cat') part of this will be represented by a
@('vl-hidindex') whose @('name') is @('cat') and whose @('indices')
are @('nil').</p>")
(defflexsum vl-hidexpr
:parents (vl-index)
:short "Representation of a (possibly) hierarchical reference to something
in the design. For example: @('cat.dog[3][2][1].elf')."
:measure (two-nats-measure (acl2-count x) 100)
(:end
:short "A lone identifier, or the final part of a hierarchical identifier."
:cond (atom x)
:fields ((name :acc-body x :type stringp
:rule-classes :type-prescription))
:ctor-body name)
(:dot
:cond t
:short "A single dot operation, perhaps with associated indices, that
connects parts of a hierarchical identifier."
:fields ((first :acc-body (car x) :type vl-hidindex-p
:doc "The part before the dot and any associated indices.")
(rest :acc-body (cdr x) :type vl-hidexpr-p
:doc "The part after the dot and indices."))
:ctor-body (cons first rest)))
(defflexsum vl-scopeexpr
:parents (vl-index)
:short "Representation of a (possibly scoped, possibly hierarchical)
reference to something in the design. For example:
@('ape::bat::cat.dog[3][2][1].elf')."
:measure (two-nats-measure (acl2-count x) 110)
(:colon
:cond (and (consp x)
(or (eq (car x) :colon)
(eq (car x) :paramscolon))) ;; ugh
:short "Represents a single scoping operator (@('::') being applied to
some interior scopeexpr."
:shape (and (consp (cdr x))
(or (eq (car x) :colon)
(and (consp (cddr x))
(caddr x))))
:fields ((first :acc-body (cadr x) :type vl-scopename-p
:doc "The outer scope name, e.g., @('ape')")
(paramargs :acc-body (and (eq (car x) :paramscolon)
(caddr x))
:type vl-maybe-paramargs
:doc "The parameter arguments for a class scope")
(rest :acc-body (if (eq (car X) :paramscolon) (cdddr x) (cddr x))
:type vl-scopeexpr-p
:doc "The inner scope expression, e.g., @('bat::cat.dog[3][2][1].elf')."))
:ctor-body (if paramargs
(cons :paramscolon (cons first (cons paramargs rest)))
(cons :colon (cons first rest))))
(:end
:cond t
:short "A scope expression that has no scoping operators. For instance,
plain identifiers or hierarchical identifiers with no scopes."
:fields ((hid :acc-body x :type vl-hidexpr-p))
:ctor-body hid)
:long "<p>A <b>scope expression</b> extends a <b>hid expression</b> with
arbitrarily many levels of scoping. For instance, in the
expression:</p>
@({
ape::bat::cat.dog[3][2][1].elf
})
<p>The @('cat.dog[3][2][1].elf') part is a plain hierarchical
identifier with no scoping. It will be wrapped up into an @(':end')
scope expression. Meanwhile, the @('ape::') and @('bat::') portions
will be represented with two recursive @(':colon') scopeexprs, with
the @('ape::') expression on the outside.</p>")
(defprod vl-plusminus
:parents (vl-partselect)
:short "Representation of a select of the form @('[base +: width]') or
@('[base -: width]')."
:tag :vl-plusminus
:layout :tree
:measure (two-nats-measure (acl2-count x) 100)
((base vl-expr-p
"The left-hand side, base expression; typically variable.")
(width vl-expr-p
"The right-hand side, width expression; typically constant.")
(minusp booleanp :rule-classes :type-prescription
"Indicates @('-:') or @('+:').")))
(defflexsum vl-partselect
:parents (vl-index)
:short "Representation of any kind of part-select that is being applied to
a some object in the design."
:measure (two-nats-measure (acl2-count x) 105)
(:none
:short "No part select."
:cond (atom x)
:shape (not x)
:fields nil
:ctor-body nil)
(:range
:short "A typical @('[msb:lsb]') style part-select, e.g., @('[3:0]') or
@('[1:5]')."
:cond (eq (car x) :vl-range)
:fields ((range :type vl-range
:acc-body x
:acc-name vl-partselect->range
:doc "The whole range being selected, as an atomic @(see
vl-range)."))
:ctor-body range
:ctor-name vl-range->partselect
:extra-binder-names (msb lsb)
:long "<p>Note that the @(see b*) binder sets up extra bindings for
@('.msb') and @('.lsb'), so you can typically access the guts of
the interior range directly.</p>")
(:plusminus
:short "An indexed part-select like @('[foo +: 3]') or @('[bar -: 4]')."
:cond t
:fields ((plusminus :type vl-plusminus
:acc-body x
:acc-name vl-partselect->plusminus
:doc "The whole indexed part select, e.g., @('[foo +:
3]'), as an atomic @(see vl-plusminus)."))
:ctor-body plusminus
:ctor-name vl-plusminus->partselect
:extra-binder-names (base width minusp)
:long "<p>Note that the @(see b*) binder sets up extra bindings for
@('.base'), @('.width'), and @('.minusp'), so you can typically
access the guts of the interior @('plusminus') directly.</p>"))
; -----------------------------------------------------------------------------
;
; ** Inside Expressions **
;
; -----------------------------------------------------------------------------
(deftagsum vl-valuerange
:parents (vl-inside)
:measure (two-nats-measure (acl2-count x) 105)
:base-case-override :valuerange-single
:short "A value or a range used in an @('inside') expression. For instance,
the @('8') or @('[16:20]') from @('a inside { 8, [16:20] }')."
:layout :tree
(:valuerange-range
:base-name vl-valuerange-range
:short "A range of values from an @('inside') expression's set. For
instance, the @('[16:20]') part of @('a inside { 8, [16:20] }')."
((low vl-expr-p "Always the left component, e.g., @('16') in @('[16:20]').")
(high vl-expr-p "Always the high component, e.g., @('20') in @('[16:20]').")))
(:valuerange-single
:base-name vl-valuerange-single
:short "A single value from an @('inside') expression's set. For
instance, the @('8') part of @('a inside { 8, [16:20] }')."
((expr vl-expr-p))))
(fty::deflist vl-valuerangelist
:measure (two-nats-measure (acl2-count x) 10)
:elt-type vl-valuerange
:elementp-of-nil nil
:parents (vl-inside))
; -----------------------------------------------------------------------------
;
; ** Streaming Expressions **
;
; -----------------------------------------------------------------------------
(deftagsum vl-slicesize
:measure (two-nats-measure (acl2-count x) 100)
:parents (vl-stream)
:short "The slice size (or an indicator that there is no size) for a
streaming expression."
:layout :tree
(:expr
:short "A slice size that is an expression, e.g., @('{<< 16 {a,b}}')
has an expression slice size of @('16')."
((expr vl-expr-p)))
(:type
:short "A slice size that is a datatype, e.g., @('{<< byte {a,b}}')
has a slice size of @('byte')."
((type vl-datatype-p)))
(:none
:short "An indication that this streaming expression does not have
any slice size, e.g., @('{<< {a}}')."
()))
(defprod vl-streamexpr
:parents (vl-stream)
:measure (two-nats-measure (acl2-count x) 110)
:short "A part of the stream in a streaming operator. For instance,
in @('{<< 16 {a, b with [0 +: size]}}'), the streamexprs are
@('a') and @('b with [0 +: size]')."
:layout :tree
((expr vl-expr-p
"The expression part without the @('with'). Example: in the
expression @('{<< 16 {a, b with [0 +: size]}}'), the exprs are
@('a') and @('b').")
(part vl-arrayrange-p
"The @('with') information, if any. Example: in the expression
@('{<< 16 {a, b with [0 +: size]}}'), the @('part') for @('a') is
the special @(':none') arrayrange, which indicates that there is
no @('with') part. The @('part') for @('b') is an arrayrange that
captures the @('[0 +: size]') information.")))
(fty::deflist vl-streamexprlist
:measure (two-nats-measure (acl2-count x) 10)
:elt-type vl-streamexpr
:elementp-of-nil nil
:parents (vl-streamexpr))
(defflexsum vl-arrayrange
:parents (vl-stream)
:short "Representation of an array range for use in @('with') operators in
streaming packing/unpacking expressions."
:measure (two-nats-measure (acl2-count x) 105)
(:none
:short "Used for plain stream expressions with no @('with') part."
:cond (or (atom x)
(eq (car x) :none))
:shape (and (consp x)
(not (cdr x)))
:fields nil
:ctor-body '(:none))
(:range
:short "A @('with [msb:lsb]') stream expression part."
:cond (eq (car x) :vl-range)
:fields ((range :type vl-range
:acc-body x
:acc-name vl-arrayrange->range
:doc "The whole range, e.g., @('[20:16]'), as an atomic
@(see vl-range)."))
:ctor-body range
:ctor-name vl-range->arrayrange
:extra-binder-names (msb lsb)
:long "<p>Note that the @(see b*) binder sets up extra bindings for
@('.msb') and @('.lsb'), so you can typically access the guts of
the interior range directly.</p>")
(:plusminus
:short "A @('with [base +: width]') or @('with [base -: width]') stream
expression part."
:cond (eq (car x) :vl-plusminus)
:fields ((plusminus :type vl-plusminus
:acc-body x
:acc-name vl-arrayrange->plusminus
:doc "The whole @('[base +: width]') or @('[base -:
width]') information as an atomic @(see
vl-plusminus)."))
:ctor-body plusminus
:ctor-name vl-plusminus->arrayrange
:extra-binder-names (base width minusp)
:long "<p>Note that the @(see b*) binder sets up extra bindings for
@('.base'), @('.width'), and @('.minusp'), so you can typically
access the guts of the interior @('plusminus') directly.</p>")
(:index
:short "A @('with index') stream expression part."
:cond t
:fields ((expr :type vl-expr
:acc-body x
:acc-name vl-arrayrange->expr
:doc "The index being used."))
:ctor-body expr
:ctor-name vl-expr->arrayrange))
; -----------------------------------------------------------------------------
;
; ** Casting **
;
; -----------------------------------------------------------------------------
(deftagsum vl-casttype
:parents (vl-cast)
:measure (two-nats-measure (acl2-count x) 10)
:short "The new type/size/signedness/constness to cast an expression to."
:layout :tree
(:type
:short "A cast to a datatype, like @('int'(foo)')."
((type vl-datatype-p "The datatype to cast to.")))
(:size
:short "A cast to a size, like @('mywidth'(foo)')."
((size vl-expr-p "The size expression.")))
(:signedness
:short "A cast to a signedness, like @('signed'(foo)') or @('unsigned'(foo)')."
((signedp booleanp :rule-classes :type-prescription)))
(:const
:short "A cast to a constant, like @('const'(foo)')."
()))
; -----------------------------------------------------------------------------
;
; ** Assignment Patterns **
;
; -----------------------------------------------------------------------------
(deftagsum vl-patternkey
:measure (two-nats-measure (acl2-count x) 100)
:parents (vl-pattern)
:short "A key in an assignment pattern."
:layout :tree
(:expr
:short "An unambiguous array index pattern key like @('5') or @('foo +
bar')."
((key vl-expr-p)))
(:structmem
:short "A struct member pattern key like @('opcode'). Note that until
@(see annotate) is done, this may be a type name which needs to be
disambiguated."
((name stringp :rule-classes :type-prescription)))
(:type
:short "A type pattern key like @('integer') or @('mytype_t')."
((type vl-datatype-p)))
(:default
:short "The special @('default') pattern key."
())
:long "<p>A @('vl-patternkey') represents a single key in an key/value
style assignment pattern, such as:</p>
@({
'{ 0: a, 1: b, 2: c, default: 0 } // assign to some array indices, default others...
'{ foo: 3, bar: 5 } // assign to struct members by name (maybe)
'{ integer: 5, opcode_t: 7 } // assign to struct members by type (maybe)
})
<p>These kinds of pattern keys are, in general, somewhat ambiguous
and difficult to resolve until elaboration time. To avoid the worst
of these ambiguities we impose certain restrictions on the kinds of
assignment patterns we support; @(see vl-patternkey-ambiguity) for
some notes about this.</p>")
(fty::defalist vl-keyvallist
:measure (two-nats-measure (acl2-count x) 10)
:key-type vl-patternkey
:val-type vl-expr-p
:parents (vl-pattern))
(deftagsum vl-assignpat
:measure (two-nats-measure (acl2-count x) 100)
:parents (vl-pattern)
:short "The (untyped) guts of an assignment pattern, e.g., @(''{1,2,3}'),
@(''{a:1, b:2}'), or similar."
:layout :tree
(:positional
:short "A positional assignment pattern like @(''{1, 2, 3}')."
((vals vl-exprlist-p
"The expressions that make up the pattern, in order.")))
(:keyval
:short "An assignment pattern using named keys, e.g., @(''{foo:1, bar:2}')."
((pairs vl-keyvallist-p
"The key/value pairs making up the pattern.")))
(:repeat
:short "A replication-style array assignment pattern like @(''{2{y}}')."
((reps vl-expr-p "Number of times the values are being replicated.")
(vals vl-exprlist-p "The list of values to replicate.")))
:base-case-override :positional)
(deftagsum vl-paramvalue
:parents (vl-paramargs)
:short "Representation for the actual values given to parameters."
:long "<p>In Verilog-2005, the values for a parameterized module were always
ordinary expressions, e.g., 3 and 5 below.</p>
@({
myalu #(.delay(3), .width(5)) alu1 (...);
})
<p>However, in SystemVerilog-2012 there can also be type parameters. For
instance, a valid instance might look like:</p>
@({
myalu #(.delay(3), .Bustype(logic [63:0])) myinst (...);
})
<p>The @('vl-paramvalue-p') is a sum-of-products style type that basically
corresponds to the SystemVerilog @('param_exprewssion') grammar rule:</p>
@({
param_expression ::= mintypmax_expression | data_type | '$'
})
<p>But note that @('$') is a valid @(see vl-expr-p) so this essentially
collapses into only two cases: expression or data type.</p>"
:measure (two-nats-measure (acl2-count x) 60)
:base-case-override :expr
(:type ((type vl-datatype)))
(:expr ((expr vl-expr))))
(fty::deflist vl-paramvaluelist
:elt-type vl-paramvalue-p
:true-listp nil
:elementp-of-nil nil
:measure (two-nats-measure (acl2-count x) 0)
///
;; (defthm vl-paramvaluelist-p-when-vl-exprlist-p
;; (implies (vl-exprlist-p x)
;; (vl-paramvaluelist-p x))
;; :hints(("Goal" :induct (len x))))
)
(defoption vl-maybe-paramvalue vl-paramvalue-p
:parents (vl-paramargs)
:measure (two-nats-measure (acl2-count x) 65)
///
(defthm type-when-vl-maybe-paramvalue-p
(implies (vl-maybe-paramvalue-p x)
(or (consp x)
(not x)))
:hints(("Goal" :in-theory (enable vl-maybe-paramvalue-p)))
:rule-classes :compound-recognizer))
(defprod vl-namedparamvalue
:parents (vl-paramargs)
:short "Representation of a single, named parameter argument."
:tag :vl-namedparamvalue
:layout :tree
:measure (two-nats-measure (acl2-count x) 70)
((name stringp :rule-classes :type-prescription
"The name of the parameter, e.g., @('size') in @('.size(3)')")
(value vl-maybe-paramvalue-p
"The value being given to this parameter, e.g., @('3') in @('.size(3)').
In Verilog-2005 this is usually an expression but might also be
@('nil') because the value can be omitted. SystemVerilog-2012
extends this to also allow data types.")))
(fty::deflist vl-namedparamvaluelist
:elt-type vl-namedparamvalue-p
:true-listp nil
:elementp-of-nil nil
:measure (two-nats-measure (acl2-count x) 0))
(deftagsum vl-paramargs
:short "Representation of the values to use for a module instance's
parameters (not ports)."
:long "<p>There are two kinds of argument lists for the parameters of module
instantiations, which we call <i>plain</i> and <i>named</i> arguments.</p>
@({
myalu #(3, 6) alu1 (...); <-- \"plain\" arguments
myalu #(.size(3), .delay(6)) alu2 (...); <-- \"named\" arguments
})
<p>A @('vl-paramargs-p') structure represents an argument list of either
variety.</p>"
:measure (two-nats-measure (acl2-count x) 5)
:base-case-override :vl-paramargs-plain
(:vl-paramargs-named
:base-name vl-paramargs-named
((args vl-namedparamvaluelist-p)))
(:vl-paramargs-plain
:base-name vl-paramargs-plain
((args vl-paramvaluelist-p))))
(defoption vl-maybe-paramargs vl-paramargs
:measure (two-nats-measure (acl2-count x) 10))
; -----------------------------------------------------------------------------
;
; ** Datatypes **
;
; -----------------------------------------------------------------------------
(deftagsum vl-datatype
:measure (two-nats-measure (acl2-count x) 30)
:base-case-override :vl-coretype
:short "Representation of a SystemVerilog variable datatype, e.g., @('logic
[7:0][3:0]'), @('string'), @('mystruct_t [3:0]'), etc."
(:vl-coretype
:layout :tree
:base-name vl-coretype
:hons t
:short "A built-in SystemVerilog datatype like @('integer'), @('string'),
@('void'), etc., or an array of such a type."
((name vl-coretypename-p
"Kind of primitive datatype, e.g., @('byte'), @('string'),
etc.")
(pdims vl-dimensionlist-p
"Only valid for integer vector types (bit, logic, reg). If
present, these are the 'packed' array dimensions, i.e., the
[7:0] part of a declaration like @('bit [7:0] memory [255:0]').
There can be arbitrarily many of these.")
(udims vl-dimensionlist-p
"Unpacked array dimensions, for instance, the @('[255:0]') part
of a declaration like @('bit [7:0] memory [255:0]'). There can
be arbitrarily many of these.")
(signedp booleanp :rule-classes :type-prescription
"Only valid for integer types. Roughly indicates whether the
integer type is signed or not. Usually you shouldn't use this;
see @(see vl-datatype-arithclass) instead.")))
(:vl-struct
:layout :tree
:base-name vl-struct
:short "A SystemVerilog @('struct') datatype, or an array of structs."
((members vl-structmemberlist-p
"The list of structure members, i.e., the fields of the structure,
in order.")
(packedp booleanp :rule-classes :type-prescription
"Roughly: says whether this struct is @('packed') or not,
but <b>warning!</b> this is complicated and generally
should not be used; see below for details.")
(pdims vl-dimensionlist-p
"Packed dimensions for the structure.")
(udims vl-dimensionlist-p
"Unpacked dimensions for the structure.")
(signedp booleanp :rule-classes :type-prescription
"Roughly: says whether this struct is @('signed') or not,
but <b>warning!</b> this is really complicated and generally
should not be used; see below for details."))
:long "<p>If you look at the SystemVerilog grammar you might notice that
there aren't unpacked dimensions:</p>
@({
data_type ::= ... | struct_union [ 'packed' [signing] ] '{'
struct_union_member { struct_union_member }
'}' { packed_dimension }
})
<p>But it seems much cleaner to make the unpacked dimensions part
of a structure, so when we deal with a variable declaration
like:</p>
@({
mystruct_t [3:0] foo [4:0];
})
<p>We can record, in the type of @('foo') itself, all of the
relevant type information, instead of having to keep the unpacked
dimensions separated.</p>
<h3>Warning about Packedp and Signedp</h3>
<p>The packedness/signedness of structures/arrays is complicated;
you should usually use utilities like @(see vl-datatype-packedp)
and @(see vl-datatype-arithclass) instead of directly using the
@('packedp') and @('signedp') fields.</p>
<p>What are the issues? At parse time, we use the @('packedp') and
@('signedp') fields to record whether the struct was declared to be
packed and/or signed.</p>
<p>For a single (non-array) structure, @('packedp') is basically
correct, except that BOZO really we should be checking that all of
the members of the struct are packed as well. But for arrays of
structs, even if the struct itself is packed, the array itself
might be unpacked. For instance, if we write:</p>
@({
struct packed { logic [3:0] a; logic [3:0] b; } myvar [3:0];
})
<p>then @('myvar') will be marked as packed, but this packedness
refers to the <i>elements</i> of @('myvar') instead of to
@('myvar') itself!</p>
<p>Signedness has similar issues except that it is more
complicated; see the documentation in @(see vl-datatype-arithclass)
and also @(see vl-usertype) for more details.</p>")
(:vl-union
:layout :tree
:base-name vl-union
:short "A SystemVerilog @('union') datatype, or an array of @('union')s."
((members vl-structmemberlist-p
"The list of union members.")
(packedp booleanp :rule-classes :type-prescription
"Roughly: says whether this union is @('packed') or not, but
<b>warning!</b> this should normally not be used as it has the
same problems as @('packedp') for structs; see @(see
vl-struct).")
(pdims vl-dimensionlist-p
"Packed dimensions for this union type.")
(udims vl-dimensionlist-p
"Unpacked dimensions for the union type. See also @(see
vl-struct) and the notes about unpacked dimensions there.")
(signedp booleanp :rule-classes :type-prescription
"Roughly: says whether this union is @('signed') or not, but
<b>warning!</b> this should normally not be used as it has the
same problems as @('signedp') for structs; see @(see
vl-struct).")
(taggedp booleanp :rule-classes :type-prescription
"Says whether this union is 'tagged' or not.")))
(:vl-enum
:layout :tree
:base-name vl-enum
:short "A SystemVerilog @('enum') datatype, or an array of @('enum')s."
((basetype vl-datatype-p
"The base type for the enum. Note that, in the SystemVerilog
syntax, enums are only allowed to have certain base types that
are very basic. But for simplicity, in our representation we
just use an arbitrary @(see vl-datatype) here.")
(items vl-enumitemlist-p
"The items of the enumeration.")
(values vl-exprlist-p
"List of all valid values of this enum, generated by enumnames transform")
(pdims vl-dimensionlist-p
"Packed dimensions for this enum type.")
(udims vl-dimensionlist-p
"Unpacked dimensions for this enum type.")))
(:vl-usertype
:layout :tree
:base-name vl-usertype
:short "Represents a reference to some user-defined SystemVerilog datatype."
;; data_type ::= ... | [ class_scope | package_scope ] type_identifier { packed_dimension }
((name vl-scopeexpr-p
"Typedef name, like @('foo_t'). May have a package scope, but
should not otherwise be hierarchical.")
(res vl-maybe-datatype-p
"The resolved type that name refers to. If present, it means
we've already looked up the type and resolved its value. See
below for more notes.")
(pdims vl-dimensionlist-p
"Packed dimensions for this user type.")
(udims vl-dimensionlist-p
"Unpacked dimensions for this user type.")
(virtual-intfc booleanp
"Indicates a virtual interface type, which we don't really support.")
(intfc-params vl-maybe-paramargs
"Parameter values -- relevant for the virtual-intfc case"))
:long "<h3>Notes about the @('res') Field</h3>
<p>Originally, to deal with user-defined types, we tried to just
substitute definitions for usertypes. However, it turns out that
this isn't correct: e.g.</p>
@({
typedef logic signed [3:0] snib;
snib [3:0] foo1;
})
<p>is <b>not</b> the same as just</p>
@({
logic signed [3:0] [3:0] foo2;
})
<p>Here, @('foo1') is an unsigned array of signed slots, whereas
@('foo2') is a signed array of unsigned slots. (NCV and VCS also
treat them differently; we believe NCV gets it right with respect
to the spec, whereas VCS seems to do the substitution.)</p>
<p>We then decided we'd just deal with usertypes directly. We
rewrote all our type-manipulating functions to operate on a
datatype and scopestack simultaneously. However, we don't want to
store scopestacks between transformations. So there's a problem
with e.g. type parameters: e.g.</p>
@({
module sub #(type and_t = logic [3:0])
(input and_t a, b, output and_t o);
assign o = a & b;
endmodule
module super ();
typedef logic signed [5:0] my_and_t;
my_and_t a, b;
my_and_t o;
sub #(.and_t(my_and_t)) inst (a, b, o);
endmodule
})
<p>Here, we want to transform @('sub'), replacing the @('and_t')
parameter with the overridden version @('my_and_t'). But
@('my_and_t') is only defined in @('super')! So we might want to
do something like replacing the @('and_t') type parameter with
@('typedef my_and_t and_t;'), or leaving it as a @('parameter
#(type and_t = my_and_t)'). But neither of these work, because
@('my_and_t') isn't defined in the scope of @('sub').</p>
<p>Our solution is to go back to doing substitution, but instead of
strictly substituting @('usertype <- definition'), we leave the
@('usertype') but add the @('res') field, a @(see
vl-maybe-datatype) which, if present, means we've resolved this
usertype and its definition is the @('res').</p>")
:long "<h3>Introduction</h3>
<p>A @('vl-datatype') may represent a SystemVerilog variable
datatype such as @('logic [3:0]'), @('integer'), @('string'),
@('struct { ...}'), @('mybus_t'), etc. It may also represent arrays
of such types with packed and/or unpacked dimensions.</p>
<p>Some higher-level functions for working with datatypes are found
in @(see mlib); see in particular @(see datatype-tools).</p>
<p>Note about the word ``<b>type</b>.'' The Verilog-2005 and
SystemVerilog-2012 standards sometimes use the word ``type'' to
refer to other things. In particular:</p>
<ul>
<li>For historical reasons, the standards sometimes refer to the
``type'' of an expression when they really mean something more like
its <b>signedness</b>. Signedness is captured by @('vl-datatype'),
but there are some nuances; see @(see vl-datatype-arithclass), @(see
vl-exprsign), and @(see portdecl-sign).</li>
<li>Net and port declarations can have a notion of a ``net type''
such as @('wire'), @('wor'), @('supply1'), etc., which govern how
multiple assignments to the net are resolved. This information is
<b>not</b> part of a @('vl-datatype'). See @(see vl-vardecl) for
additional discussion.</li>
</ul>
<p>Note that we do not yet implement some of the more advanced
SystemVerilog datatypes, including at least the following:</p>
@({
data_type ::= ...
| 'virtual' [ 'interface' ] interface_identifier [ parameter_value_assignment ] [ '.' modport_identifier ]
| class_type
| type_reference
})")
(defoption vl-maybe-datatype vl-datatype
:measure (two-nats-measure (acl2-count x) 40)
:parents (vl-datatype))
(defprod vl-structmember
:parents (vl-struct vl-union)
:measure (two-nats-measure (acl2-count x) 110)
:tag :vl-structmember
:layout :tree
:short "A single member of a struct or union."
;; struct_union_member ::= { attribute_instance } [random_qualifier]
;; data_type_or_void
;; list_of_variable_decl_assignments ';'
((type vl-datatype-p
"Type of the struct member, including any unpacked dimensions (even
though they normally come after the name.)")
;; now we want a single variable_decl_assignment
(name stringp :rule-classes :type-prescription)
(rhs vl-maybe-expr-p
"Right-hand side expression that gives the default value to this
member, if applicable.")
(rand vl-randomqualifier-p
"Indicates whether a @('rand') or @('randc') keyword was used.")
(atts vl-atts-p
"Any <tt>(* foo = bar, baz *)</tt> style attributes."))
:long "<p>Currently our structure members are very limited. In the long
run we may want to support more of the SystemVerilog grammar. It
allows a list of variable declaration assignments, which can have
fancy dimensions and different kinds of @('new') operators.</p>
<p>Notes for the future:</p>
@({
variable_decl_assignment ::=
variable_identifier { variable_dimension } [ '=' expression ]
| dynamic_array_variable_identifier unsized_dimension { variable_dimension } [ '=' dynamic_array_new ]
| class_variable_identifier [ '=' class_new ]
})
<p>These fancy @('_identifiers') are all just identifiers. So
really this is:</p>
@({
variable_decl_assignment ::=
identifier { variable_dimension } [ '=' expression ]
| identifier unsized_dimension { variable_dimension } [ '=' dynamic_array_new ]
| identifier [ '=' class_new ]
})
<p>The @('new') keyword can occur in a variety of places. One of
these is related to defining constructors for classes, e.g., in
class constructor prototypes/declarations we can have things
like</p>
@({
function ... new (...) ...
})
<p>And @('super.new(...)') and so on. But for now let's think of
these as separate cases; that is, our approach to @('new') in other
contexts doesn't necessarily need to have anything to do with these
constructors, which we might instead handle more explicitly.</p>
<p>The other places where @('new') can occur are in:</p>
@({
dynamic_array_new ::= new '[' expression ']' [ '(' expression ')' ]
class_new ::= [ class_scope ] 'new' [ '(' list_of_arguments ')' ]
| 'new' expression
})
<p>Which in turn can occur in blocking assignments:</p>
@({
[some fancy lhs] = dynamic_array_new
or [some other fancy lhs] = class_new
or other things not involving new
})
<p>(Which is interesting because we also have to support a lot of
other new kinds of assignments like @('+=') and @('*='), so maybe
this could become a @('new=') kind of assignment or something.)</p>
<p>And they can also occur in variable decl assignments:</p>
@({
simple id [ = expression ]
or some fancy lhs with some various dimensions [= dynamic_array_new]
or some simple lhs [= class_new]
})
<p>Which can occur in:</p>
<ul>
<li>SVA assertion variable declarations</li>
<li>Data declarations (e.g., top-level @('const suchandso = new ...')</li>
<li>Structure members in structs and unions.</li>
</ul>
<p>So maybe we don't so much need these to be expressions. Maybe we
can get away with them as alternate kinds of assignments.</p>")
(fty::deflist vl-structmemberlist
:measure (two-nats-measure (acl2-count x) 10)
:elt-type vl-structmember
:elementp-of-nil nil
:parents (vl-structmember))
(defprod vl-enumitem
:parents (vl-enum)
:measure (two-nats-measure (acl2-count x) 120)
:tag :vl-enumitem
:layout :tree
:short "A single member of an @('enum')."
;; enum_name_declaration ::=
;; enum_identifier [ [ integral_number [ : integral_number ] ] ] [ = constant_expression ]
((name stringp :rule-classes :type-prescription
"Name of this enumeration item. For instance, in @('enum { red,
yellow, green }'), the individual enumitems would be named
@('\"red\"'), @('\"yellow\"'), and @('\"green\"').")
(range vl-maybe-range-p
"For simple enumeration items this is @('nil'), but for a fancy
item, e.g., for @('enum { color[6:2] }'), the range would be
@('[6:2]'). These might later be converted into their expanded
out names, e.g., @('color6'), @('color5'), ..., @('color2').")
(value vl-maybe-expr-p
"For simple enumeration items without an explicit value expression
this is just @('nil'). For fancier items with explicit values
like @('enum { foo=5, ... }') this is the right-hand side
expression, i.e., @('5').")))
(fty::deflist vl-enumitemlist
:elt-type vl-enumitem
:measure (two-nats-measure (acl2-count x) 10)
:elementp-of-nil nil
:parents (vl-enum))
; -----------------------------------------------------------------------------
;
; ** Event Expressions **
;
; -----------------------------------------------------------------------------
(defprod vl-evatom
:short "A single item in an event control list."
:tag :vl-evatom
:layout :tree
:measure (two-nats-measure (acl2-count x) 60)
((type vl-evatomtype-p
"Kind of atom, e.g., posedge, negedge, edge, or plain.")
(expr vl-expr-p
"Associated expression, e.g., @('foo') for @('posedge foo')."))
:long "<p>Event expressions and controls are described in Section 9.7.</p>
<p>We represent the expressions for an event control (see @(see
vl-eventcontrol-p)) as a list of @('vl-evatom-p') structures. Each
individual evatom is either a plain Verilog expression, or is
@('posedge') or @('negedge') applied to a Verilog expression.</p>")
(fty::deflist vl-evatomlist
:elt-type vl-evatom-p
:measure (two-nats-measure (acl2-count x) 75)
:true-listp nil
:elementp-of-nil nil)
) ;; End of the huge mutual recursion.
; -----------------------------------------------------------------------------
;
; ** Extra Range Binders **
;
; These are used to provide things like the .msb and .lsb b* binders for
; things that have ranges or plusminuses in them, like partselects.
;
; -----------------------------------------------------------------------------
(define vl-partselect-range->msb ((x vl-partselect-p))
:parents (vl-partselect-range)
:guard (eq (vl-partselect-kind x) :range)
:short "Directly get the @('msb') of a @(see vl-partselect-range)'s range."
:long "<p>This is also available as a @('.msb') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-range->msb (vl-partselect->range x)))
(define vl-partselect-range->lsb ((x vl-partselect-p))
:parents (vl-partselect-range)
:guard (eq (vl-partselect-kind x) :range)
:short "Directly get the @('lsb') of a @(see vl-partselect-range)'s range."
:long "<p>This is also available as a @('.lsb') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-range->lsb (vl-partselect->range x)))
(define vl-partselect-plusminus->base ((x vl-partselect-p))
:parents (vl-partselect-plusminus)
:guard (eq (vl-partselect-kind x) :plusminus)
:short "Directly get the @('base') of a @(see vl-partselect-plusminus)'s plusminus."
:long "<p>This is also available as a @('.base') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-plusminus->base (vl-partselect->plusminus x)))
(define vl-partselect-plusminus->width ((x vl-partselect-p))
:parents (vl-partselect-plusminus)
:guard (eq (vl-partselect-kind x) :plusminus)
:short "Directly get the @('width') of a @(see vl-partselect-plusminus)'s plusminus."
:long "<p>This is also available as a @('.width') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-plusminus->width (vl-partselect->plusminus x)))
(define vl-partselect-plusminus->minusp ((x vl-partselect-p))
:parents (vl-partselect-plusminus)
:guard (eq (vl-partselect-kind x) :plusminus)
:short "Directly get the @('minusp') of a @(see vl-partselect-plusminus)'s plusminus."
:long "<p>This is also available as a @('.minusp') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-plusminus->minusp (vl-partselect->plusminus x)))
(define vl-arrayrange-range->msb ((x vl-arrayrange-p))
:parents (vl-arrayrange)
:guard (eq (vl-arrayrange-kind x) :range)
:short "Directly get the @('msb') of a @(see vl-arrayrange-range)'s range."
:long "<p>This is also available as a @('.msb') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-range->msb (vl-arrayrange->range x)))
(define vl-arrayrange-range->lsb ((x vl-arrayrange-p))
:parents (vl-arrayrange)
:guard (eq (vl-arrayrange-kind x) :range)
:short "Directly get the @('lsb') of a @(see vl-arrayrange-range)'s range."
:long "<p>This is also available as a @('.lsb') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-range->lsb (vl-arrayrange->range x)))
(define vl-arrayrange-plusminus->base ((x vl-arrayrange-p))
:parents (vl-arrayrange)
:guard (eq (vl-arrayrange-kind x) :plusminus)
:short "Directly get the @('base') of a @(see vl-arrayrange-plusminus)'s plusminus."
:long "<p>This is also available as a @('.base') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-plusminus->base (vl-arrayrange->plusminus x)))
(define vl-arrayrange-plusminus->width ((x vl-arrayrange-p))
:parents (vl-arrayrange)
:guard (eq (vl-arrayrange-kind x) :plusminus)
:short "Directly get the @('width') of a @(see vl-arrayrange-plusminus)'s plusminus."
:long "<p>This is also available as a @('.width') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-plusminus->width (vl-arrayrange->plusminus x)))
(define vl-arrayrange-plusminus->minusp ((x vl-arrayrange-p))
:parents (vl-arrayrange)
:guard (eq (vl-arrayrange-kind x) :plusminus)
:short "Directly get the @('minusp') of a @(see vl-arrayrange-plusminus)'s plusminus."
:long "<p>This is also available as a @('.minusp') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-plusminus->minusp (vl-arrayrange->plusminus x)))
(define vl-dimension-range->msb ((x vl-dimension-p))
:parents (vl-dimension)
:guard (eq (vl-dimension-kind x) :range)
:short "Directly get the @('msb') of a @(see vl-dimension-range)'s range."
:long "<p>This is also available as a @('.msb') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-range->msb (vl-dimension->range x)))
(define vl-dimension-range->lsb ((x vl-dimension-p))
:parents (vl-dimension)
:guard (eq (vl-dimension-kind x) :range)
:short "Directly get the @('lsb') of a @(see vl-dimension-range)'s range."
:long "<p>This is also available as a @('.lsb') @(see b*) binding.</p>"
:inline t
:enabled t
(vl-range->lsb (vl-dimension->range x)))
; -----------------------------------------------------------------------------
;
; ** Miscellaneous Lemmas **
;
; -----------------------------------------------------------------------------
(defthm vl-constint-bound-linear
(< (vl-constint->value x)
(expt 2 (vl-constint->origwidth x)))
:hints (("goal" :use vl-constint-requirements
:in-theory (e/d (unsigned-byte-p)
(vl-constint-requirements))))
:rule-classes :linear)
(defthm consp-of-vl-weirdint->bits
(consp (vl-weirdint->bits x))
:rule-classes :type-prescription
:hints(("Goal"
:in-theory (disable vl-weirdint-requirements)
:use ((:instance vl-weirdint-requirements)))))
(defthm type-when-vl-maybe-expr-p
(implies (vl-maybe-expr-p x)
(or (consp x)
(not x)))
:rule-classes :compound-recognizer
:hints(("Goal" :in-theory (enable vl-maybe-expr-p))))
(defthm vl-expr-count-of-maybe-expr
(implies x
(< (vl-expr-count x) (vl-maybe-expr-count x)))
:rule-classes :linear
:hints(("Goal"
:expand ((vl-maybe-expr-count x))
:in-theory (enable vl-maybe-expr-some->val))))
(defthm type-when-vl-maybe-range-p
(implies (vl-maybe-range-p x)
(or (consp x)
(not x)))
:rule-classes :compound-recognizer
:hints(("Goal" :in-theory (enable vl-maybe-range-p))))
(defthm vl-range-count-of-maybe-range
(implies x
(< (vl-range-count x) (vl-maybe-range-count x)))
:rule-classes :linear
:hints(("Goal"
:expand ((vl-maybe-range-count x))
:in-theory (enable vl-maybe-range-some->val))))
(defthm type-when-vl-maybe-datatype-p
(implies (vl-maybe-datatype-p x)
(or (consp x)
(not x)))
:rule-classes :compound-recognizer
:hints(("Goal" :in-theory (enable vl-maybe-datatype-p))))
(defthm vl-datatype-count-of-maybe-datatype
(implies x
(< (vl-datatype-count x) (vl-maybe-datatype-count x)))
:rule-classes :linear
:hints(("Goal"
:expand ((vl-maybe-datatype-count x))
:in-theory (enable vl-maybe-datatype-some->val))))
(defthm type-when-vl-dimension-p
(implies (vl-dimension-p x)
(or (consp x)
(and (symbolp x)
x
(not (equal x t)))))
:rule-classes :compound-recognizer
:hints(("Goal" :in-theory (enable vl-dimension-p tag))))
(defthm type-when-vl-maybe-dimension-p
(implies (vl-maybe-dimension-p x)
(or (consp x)
(and (symbolp x)
(not (eq x t)))))
:rule-classes :compound-recognizer
:hints(("Goal" :in-theory (enable vl-maybe-dimension-p))))
(defthm vl-dimension-count-of-maybe-dimension
(implies x
(< (vl-dimension-count x) (vl-maybe-dimension-count x)))
:rule-classes :linear
:hints(("Goal"
:expand ((vl-maybe-dimension-count x))
:in-theory (enable vl-maybe-dimension-some->val))))
(defthm vl-expr-p-of-cdr-of-hons-assoc-equal-when-vl-atts-p
(implies (vl-atts-p atts)
(equal (vl-expr-p (cdr (hons-assoc-equal key atts)))
(if (cdr (hons-assoc-equal key atts))
t
nil)))
:hints(("Goal"
:in-theory (enable hons-assoc-equal)
:induct (hons-assoc-equal key atts))))
(defsection vl-exprlist-fix-basics
:extension (vl-exprlist-fix)
;; BOZO should FTY automatically prove this kind of stuff?
(defthm vl-exprlist-fix-of-list-fix
(equal (vl-exprlist-fix (list-fix x))
(list-fix (vl-exprlist-fix x)))
:hints(("Goal" :induct (len x))))
(defthm vl-exprlist-fix-of-rev
(equal (vl-exprlist-fix (rev x))
(rev (vl-exprlist-fix x)))
:hints(("Goal" :induct (len x))))
(defthm vl-exprlist-fix-of-nthcdr
(equal (vl-exprlist-fix (nthcdr n x))
(nthcdr n (vl-exprlist-fix x)))
:hints(("Goal"
:in-theory (e/d (nthcdr vl-exprlist-fix default-cdr)
(acl2::nthcdr-of-cdr))
:do-not '(generalize fertilize))))
(defthm vl-exprlist-fix-of-take
(equal (take n (vl-exprlist-fix x))
(if (<= (nfix n) (len x))
(vl-exprlist-fix (take n x))
(append (vl-exprlist-fix x)
(replicate (- (nfix n) (len x)) nil))))
:hints(("Goal" :in-theory (enable acl2::take))))
(defcong vl-exprlist-equiv vl-exprlist-equiv (list-fix x) 1)
(defcong vl-exprlist-equiv vl-exprlist-equiv (rev x) 1))
; -----------------------------------------------------------------------------
;
; ** Generic Expression Stuff **
;
; -----------------------------------------------------------------------------
(define vl-expr->atts ((x vl-expr-p))
:returns (atts vl-atts-p)
:parents (vl-expr)
:short "Get the attributes from any expression."
(vl-expr-case x
:vl-special x.atts
:vl-literal x.atts
:vl-index x.atts
:vl-unary x.atts
:vl-binary x.atts
:vl-qmark x.atts
:vl-mintypmax x.atts
:vl-concat x.atts
:vl-multiconcat x.atts
:vl-stream x.atts
:vl-call x.atts
:vl-cast x.atts
:vl-inside x.atts
:vl-tagged x.atts
:vl-pattern x.atts
:vl-eventexpr x.atts)
///
(deffixequiv vl-expr->atts)
"<p>The following are goofy rules: normally we want to normalize things to
@('(vl-expr->atts <term>)'), but if @('<term>') is a call of one of the
particular expression constructors, we'll rewrite the other way so that we
can simplify it to just whatever @('atts') are being given to the
constructor.</p>"
(defthm vl-expr-atts-when-vl-special
(implies (vl-expr-case x :vl-special)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-special)))
(equal (vl-expr->atts x)
(vl-special->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-special))))
(equal (vl-special->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-literal
(implies (vl-expr-case x :vl-literal)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-literal)))
(equal (vl-expr->atts x)
(vl-literal->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-literal))))
(equal (vl-literal->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-index
(implies (vl-expr-case x :vl-index)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-index)))
(equal (vl-expr->atts x)
(vl-index->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-index))))
(equal (vl-index->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-unary
(implies (vl-expr-case x :vl-unary)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-unary)))
(equal (vl-expr->atts x)
(vl-unary->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-unary))))
(equal (vl-unary->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-binary
(implies (vl-expr-case x :vl-binary)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-binary)))
(equal (vl-expr->atts x)
(vl-binary->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-binary))))
(equal (vl-binary->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-qmark
(implies (vl-expr-case x :vl-qmark)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-qmark)))
(equal (vl-expr->atts x)
(vl-qmark->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-qmark))))
(equal (vl-qmark->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-mintypmax
(implies (vl-expr-case x :vl-mintypmax)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-mintypmax)))
(equal (vl-expr->atts x)
(vl-mintypmax->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-mintypmax))))
(equal (vl-mintypmax->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-concat
(implies (vl-expr-case x :vl-concat)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-concat)))
(equal (vl-expr->atts x)
(vl-concat->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-concat))))
(equal (vl-concat->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-multiconcat
(implies (vl-expr-case x :vl-multiconcat)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-multiconcat)))
(equal (vl-expr->atts x)
(vl-multiconcat->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-multiconcat))))
(equal (vl-multiconcat->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-stream
(implies (vl-expr-case x :vl-stream)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-stream)))
(equal (vl-expr->atts x)
(vl-stream->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-stream))))
(equal (vl-stream->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-call
(implies (vl-expr-case x :vl-call)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-call)))
(equal (vl-expr->atts x)
(vl-call->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-call))))
(equal (vl-call->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-cast
(implies (vl-expr-case x :vl-cast)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-cast)))
(equal (vl-expr->atts x)
(vl-cast->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-cast))))
(equal (vl-cast->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-inside
(implies (vl-expr-case x :vl-inside)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-inside)))
(equal (vl-expr->atts x)
(vl-inside->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-inside))))
(equal (vl-inside->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-tagged
(implies (vl-expr-case x :vl-tagged)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-tagged)))
(equal (vl-expr->atts x)
(vl-tagged->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-tagged))))
(equal (vl-tagged->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-pattern
(implies (vl-expr-case x :vl-pattern)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-pattern)))
(equal (vl-expr->atts x)
(vl-pattern->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-pattern))))
(equal (vl-pattern->atts x)
(vl-expr->atts x))))))
(defthm vl-expr-atts-when-vl-eventexpr
(implies (vl-expr-case x :vl-eventexpr)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-eventexpr)))
(equal (vl-expr->atts x)
(vl-eventexpr->atts x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-eventexpr))))
(equal (vl-eventexpr->atts x)
(vl-expr->atts x))))))
"<p>For recurring into the atts we may need to know this.</p>"
(defthm vl-atts-count-of-vl-expr->atts
(< (vl-atts-count (vl-expr->atts x))
(vl-expr-count x))
:hints(("Goal" :in-theory (disable vl-expr->atts)
:expand ((vl-expr-count x))))
:rule-classes :linear))
(define vl-expr-update-atts
:parents (vl-expr)
:short "Change the attributes of any expression."
((x vl-expr-p "Expression to modify.")
(atts vl-atts-p "New attributes to install. Any previous attributes will be
overwritten."))
:returns (new-x vl-expr-p)
(vl-expr-case x
:vl-special (change-vl-special x :atts atts)
:vl-literal (change-vl-literal x :atts atts)
:vl-index (change-vl-index x :atts atts)
:vl-unary (change-vl-unary x :atts atts)
:vl-binary (change-vl-binary x :atts atts)
:vl-qmark (change-vl-qmark x :atts atts)
:vl-mintypmax (change-vl-mintypmax x :atts atts)
:vl-concat (change-vl-concat x :atts atts)
:vl-multiconcat (change-vl-multiconcat x :atts atts)
:vl-stream (change-vl-stream x :atts atts)
:vl-call (change-vl-call x :atts atts)
:vl-cast (change-vl-cast x :atts atts)
:vl-inside (change-vl-inside x :atts atts)
:vl-tagged (change-vl-tagged x :atts atts)
:vl-pattern (change-vl-pattern x :atts atts)
:vl-eventexpr (change-vl-eventexpr x :atts atts))
///
(defret vl-expr->atts-of-vl-expr-update-atts
(equal (vl-expr->atts new-x)
(vl-atts-fix atts)))
(defret vl-expr-kind-of-vl-expr-update-atts
(equal (vl-expr-kind new-x)
(vl-expr-kind x))))
; -----------------------------------------------------------------------------
;
; ** Generic Datatype Stuff **
;
; -----------------------------------------------------------------------------
(define vl-datatype->pdims
:parents (vl-datatype)
:short "Get the packed dimensions from any datatype."
((x vl-datatype-p))
:returns (pdims vl-dimensionlist-p)
(vl-datatype-case x
:vl-coretype x.pdims
:vl-struct x.pdims
:vl-union x.pdims
:vl-enum x.pdims
:vl-usertype x.pdims)
///
(deffixequiv vl-datatype->pdims)
"<p>These are goofy rules: normally we want to normalize things to
@('(vl-datatype->pdims <term>)'), but if @('<term>') is a call of one of the
particular datatype constructors, we'll rewrite the other way so that we can
simplify it to just whatever @('pdims') are being given to the
constructor.</p>"
(defthm vl-datatype-pdims-when-vl-coretype
(implies (vl-datatype-case x :vl-coretype)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-coretype)))
(equal (vl-datatype->pdims x)
(vl-coretype->pdims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-coretype))))
(equal (vl-coretype->pdims x)
(vl-datatype->pdims x))))))
(defthm vl-datatype-pdims-when-vl-struct
(implies (vl-datatype-case x :vl-struct)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-struct)))
(equal (vl-datatype->pdims x)
(vl-struct->pdims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-struct))))
(equal (vl-struct->pdims x)
(vl-datatype->pdims x))))))
(defthm vl-datatype-pdims-when-vl-union
(implies (vl-datatype-case x :vl-union)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-union)))
(equal (vl-datatype->pdims x)
(vl-union->pdims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-union))))
(equal (vl-union->pdims x)
(vl-datatype->pdims x))))))
(defthm vl-datatype-pdims-when-vl-enum
(implies (vl-datatype-case x :vl-enum)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-enum)))
(equal (vl-datatype->pdims x)
(vl-enum->pdims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-enum))))
(equal (vl-enum->pdims x)
(vl-datatype->pdims x))))))
(defthm vl-datatype-pdims-when-vl-usertype
(implies (vl-datatype-case x :vl-usertype)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-usertype)))
(equal (vl-datatype->pdims x)
(vl-usertype->pdims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-usertype))))
(equal (vl-usertype->pdims x)
(vl-datatype->pdims x)))))))
(define vl-datatype->udims ((x vl-datatype-p))
:parents (vl-datatype)
:short "Get the unpacked dimensions from any datatype."
:returns (udims vl-dimensionlist-p)
(vl-datatype-case x
:vl-coretype x.udims
:vl-struct x.udims
:vl-union x.udims
:vl-enum x.udims
:vl-usertype x.udims)
///
(deffixequiv vl-datatype->udims)
(defret vl-dimensionlist-count-of-vl-datatype->pdims/udims
(< (+ (vl-dimensionlist-count (vl-datatype->pdims x))
(vl-dimensionlist-count (vl-datatype->udims x)))
(vl-datatype-count x))
:hints (("goal"
:expand ((vl-datatype-count x))))
:rule-classes :linear)
"<p>These are goofy rules: normally we want to normalize things to
@('(vl-datatype->udims <term>)'), but if @('<term>') is a call of one of the
particular datatype constructors, we'll rewrite the other way so that we can
simplify it to just whatever @('udims') are being given to the
constructor.</p>"
(defthm vl-datatype-udims-when-vl-coretype
(implies (vl-datatype-case x :vl-coretype)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-coretype)))
(equal (vl-datatype->udims x)
(vl-coretype->udims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-coretype))))
(equal (vl-coretype->udims x)
(vl-datatype->udims x))))))
(defthm vl-datatype-udims-when-vl-struct
(implies (vl-datatype-case x :vl-struct)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-struct)))
(equal (vl-datatype->udims x)
(vl-struct->udims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-struct))))
(equal (vl-struct->udims x)
(vl-datatype->udims x))))))
(defthm vl-datatype-udims-when-vl-union
(implies (vl-datatype-case x :vl-union)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-union)))
(equal (vl-datatype->udims x)
(vl-union->udims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-union))))
(equal (vl-union->udims x)
(vl-datatype->udims x))))))
(defthm vl-datatype-udims-when-vl-enum
(implies (vl-datatype-case x :vl-enum)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-enum)))
(equal (vl-datatype->udims x)
(vl-enum->udims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-enum))))
(equal (vl-enum->udims x)
(vl-datatype->udims x))))))
(defthm vl-datatype-udims-when-vl-usertype
(implies (vl-datatype-case x :vl-usertype)
(and (implies (syntaxp (and (consp x)
(eq (car x) 'vl-usertype)))
(equal (vl-datatype->udims x)
(vl-usertype->udims x)))
(implies (syntaxp (not (and (consp x)
(eq (car x) 'vl-usertype))))
(equal (vl-usertype->udims x)
(vl-datatype->udims x)))))))
(define vl-datatype-update-dims
:parents (vl-datatype)
:short "Update the dimensions of any datatype, no matter its kind."
((pdims vl-dimensionlist-p "New packed dimensions to install.")
(udims vl-dimensionlist-p "New unpacked dimensions to install.")
(x vl-datatype-p "Datatype to update."))
:returns
(newx "Updated version of @('x') with new dimensions installed."
(and (vl-datatype-p newx)
(eq (vl-datatype-kind newx) (vl-datatype-kind x))))
(vl-datatype-case x
:vl-coretype (change-vl-coretype x :pdims pdims :udims udims)
:vl-struct (change-vl-struct x :pdims pdims :udims udims)
:vl-union (change-vl-union x :pdims pdims :udims udims)
:vl-enum (change-vl-enum x :pdims pdims :udims udims)
:vl-usertype (change-vl-usertype x :pdims pdims :udims udims))
///
(defthm vl-datatype-update-dims-of-own
(equal (vl-datatype-update-dims (vl-datatype->pdims x)
(vl-datatype->udims x)
x)
(vl-datatype-fix x)))
(defthm vl-datatype->pdims-of-vl-datatype-update-dims
(equal (vl-datatype->pdims (vl-datatype-update-dims pdims udims x))
(vl-dimensionlist-fix pdims))
:hints(("Goal" :in-theory (enable vl-datatype->pdims))))
(defthm vl-datatype->udims-of-vl-datatype-update-dims
(equal (vl-datatype->udims (vl-datatype-update-dims pdims udims x))
(vl-dimensionlist-fix udims))
:hints(("Goal" :in-theory (enable vl-datatype->udims)))))
(define vl-datatype-update-pdims ((pdims vl-dimensionlist-p) (x vl-datatype-p))
:parents (vl-datatype)
:enabled t
:prepwork ((local (in-theory (enable vl-datatype-update-dims))))
:returns (newx (and (vl-datatype-p newx)
(eq (vl-datatype-kind newx) (vl-datatype-kind x))))
(mbe :logic (vl-datatype-update-dims pdims (vl-datatype->udims x) x)
:exec (vl-datatype-case x
:vl-coretype (change-vl-coretype x :pdims pdims)
:vl-struct (change-vl-struct x :pdims pdims)
:vl-union (change-vl-union x :pdims pdims)
:vl-enum (change-vl-enum x :pdims pdims)
:vl-usertype (change-vl-usertype x :pdims pdims))))
(define vl-datatype-update-udims ((udims vl-dimensionlist-p) (x vl-datatype-p))
:parents (vl-datatype)
:enabled t
:prepwork ((local (in-theory (enable vl-datatype-update-dims))))
:returns (newx (and (vl-datatype-p newx)
(eq (vl-datatype-kind newx) (vl-datatype-kind x))))
(mbe :logic (vl-datatype-update-dims (vl-datatype->pdims x) udims x)
:exec (vl-datatype-case x
:vl-coretype (change-vl-coretype x :udims udims)
:vl-struct (change-vl-struct x :udims udims)
:vl-union (change-vl-union x :udims udims)
:vl-enum (change-vl-enum x :udims udims)
:vl-usertype (change-vl-usertype x :udims udims))))
; -----------------------------------------------------------------------------
;
; ** Miscellaneous Stuff **
;
; Maybe we can move this elsewhere.
;
; -----------------------------------------------------------------------------
(fty::deflist vl-rangelist
:elt-type vl-range
:parents (vl-range))
(define vl-scopeexpr->expr ((x vl-scopeexpr-p))
:parents (vl-index vl-scopeexpr)
:short "Promote an @(see vl-scopeexpr) into a proper @(see vl-index) without
any part select."
:returns (expr vl-expr-p)
(make-vl-index :scope x
:indices nil
:part (make-vl-partselect-none)
:atts nil))
(defval *vl-plain-old-logic-type*
:parents (vl-datatype)
:short "The @(see vl-datatype) for a plain @('wire') or @('logic') variable."
:long "<p>It might seem weird to think of a @('wire') as having a datatype;
see @(see vl-vardecl).</p>"
(hons-copy (make-vl-coretype :name :vl-logic
:signedp nil
:pdims nil)))
(defval *vl-plain-old-reg-type*
:parents (vl-datatype)
:short "The @(see vl-datatype) for a plain @('reg') variable."
(hons-copy (make-vl-coretype :name :vl-reg
:signedp nil
:pdims nil)))
(defval *vl-plain-old-integer-type*
:parents (vl-datatype)
:short "The @(see vl-datatype) for a plain @('integer') variable."
(hons-copy (make-vl-coretype :name :vl-integer
:signedp t ;; integer type is signed
:pdims nil ;; Not applicable to integers
)))
(defval *vl-plain-old-real-type*
:parents (vl-datatype)
:short "The @(see vl-datatype) for a plain @('real') variable."
(hons-copy (make-vl-coretype :name :vl-real
:signedp nil ;; Not applicable to reals
:pdims nil ;; Not applicable to reals
)))
(defval *vl-plain-old-time-type*
:parents (vl-datatype)
:short "The @(see vl-datatype) for a plain @('time') variable."
(hons-copy (make-vl-coretype :name :vl-time
:signedp nil ;; Not applicable to times
:pdims nil ;; Not applicable to times
)))
(defval *vl-plain-old-realtime-type*
:parents (vl-datatype)
:short "The @(see vl-datatype) for a plain @('realtime') variable."
(hons-copy (make-vl-coretype :name :vl-realtime
:signedp nil ;; Not applicable to realtimes
:pdims nil ;; Not applicable to realtimes
)))
(deftagsum vl-rhs
:short "A right-hand side for a variable initialization or procedural assignment."
:long "<p>This is meant to represent things that can come to the right of an
equal sign in a variable declaration or procedural assignment. This might be a
simple expression, or a @('new') expression.</p>"
(:vl-rhsexpr
:short "A simple expression being used as a right-hand-side, e.g., the @('5')
in something like @('integer foo = 5')."
:base-name vl-rhsexpr
((guts vl-expr-p)))
(:vl-rhsnew
:short "A 'new' invocation being used as a right-hand-side."
:base-name vl-rhsnew
((arrsize vl-maybe-expr-p
"For @('new') arrays, this is the dimension of the array. For instance,
in @('arr[0] = new [4]') this would be the @('4'). For
ordinary @('new') instances of classes, this is just @('nil').")
(args vl-exprlist-p
"Arguments to the new class or array."))))
(defoption vl-maybe-rhs vl-rhs)
|