1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
; Alist-defuns.lisp - definitions of functions in the theory of alists.
; Copyright (C) 1997 Computational Logic, Inc.
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
; Written by: Bill Bevier (bevier@cli.com)
; Computational Logic, Inc.
; 1717 West Sixth Street, Suite 290
; Austin, TX 78703-4776 U.S.A.
(in-package "ACL2")
(deflabel alist-defuns-section)
; * Structure of the Theory
;
; The functions which occur in the alist theory are selected from
; the ACL2 base theory (as defined in axioms.lisp) plus other functions
; which descend from earlier alist libraries.
;
; alist-defuns.lisp contains the definitions of functions which are not
; in the ACL2 base theory.
;
; alist-defthms.lisp contains theorems about the functions in the
; theory. Segregating the theory into two files allows one to load
; only the definitions when one is only interested in running
; simulations.
;
; * General Strategy for Theory Construction
;
; The goal of this theory is to provide useful alist-processing functions
; and useful theorems about those functions.
;
; * Enabled and Disabled functions
;
; We plan to leave all recursive functions enabled. The theorem prover
; is good at deciding when to open recursive functions. An expert user
; can choose to disable them explicitly.
;
; Non-recursive functions are globally disabled by the book alist-defthms.
;
; * Equality
;
; ACL2 (and Common Lisp) support three notions of equality: EQL, EQ and EQUAL.
; One uses EQL or EQ, rather than EQUAL, for efficiency. Many functions
; have three versions, each based on a different equality. ASSOC uses EQL,
; however ASSOC-EQ and ASSOC-EQUAL are also defined.
;
; We have followed this naming convention. When a function relies on equality.
; the default notion is EQL; -EQ and -EQUAL versions of the function are
; also provided.
;
; In list-defthms, the EQL and EQ versions of all functions are re-written to the
; EQUAL version. All interesting rewrite rules about the list functions are
; expressed in terms of the EQUAL versions of list functions.
;
; As a result, one can execute using the EQL or EQ versions, but one will reason
; using the EQUAL version.
; ------------------------------------------------------------
; Definitions
; ------------------------------------------------------------
; Acl2 In ACL2 type
; ---- ------- ----
;
; acons yes alist
; append yes alist
; alist-compose (eql) no alist
; alist-compose-eq no alist
; alist-compose-equal no alist
; bind (eql) no alist
; bind-eq no alist
; bind-equal no alist
; bind-all (eql) no alist
; bind-all-eq no alist
; bind-all-equal no alist
; bind-pairs (eql) no alist
; bind-pairs-eq no alist
; bind-pairs-equal no alist
; domain-restrict (eql) no alist
; domain-restrict-eq no alist
; domain-restrict-equal no alist
; pairlis$ yes alist
; rembind (eql) no alist
; rembind-eq no alist
; rembind-equal no alist
; rembind-all (eql) no alist
; rembind-all-eq no alist
; rembind-all-equal no alist
;
; assoc (eql) yes cons or NIL
; assoc-eq yes cons or NIL
; assoc-equal yes cons or NIL
; binding no value or NIL
; binding-eq no value or NIL
; binding-equal no value or NIL
;
; alistp yes boolean
; bound? no boolean
; bound?-eq no boolean
; bound?-equal no boolean
; all-bound? (eql) no boolean
; all-bound?-eq no boolean
; all-bound?-equal no boolean
;
; all-bindings (eql) no list
; all-bindings-eq no list
; all-bindings-equal no list
; collect-bound (eql) no list
; collect-bound-eq no list
; collect-bound-equal no list
; domain no list
; range yes list
(defun bind (x y a)
"The alist derived from A by binding X to Y."
(declare (xargs :guard (and (alistp a) (eqlablep x))))
(cond ((endp a) (list (cons x y)))
((eql x (car (car a))) (cons (cons x y) (cdr a)))
(t (cons (car a) (bind x y (cdr a))))))
(defun bind-eq (x y a)
"The alist derived from A by binding X to Y."
(declare (xargs :guard (and (alistp a) (symbolp x))))
(cond ((endp a) (list (cons x y)))
((eq x (car (car a))) (cons (cons x y) (cdr a)))
(t (cons (car a) (bind-eq x y (cdr a))))))
(defun bind-equal (x y a)
"The alist derived from A by binding X to Y."
(declare (xargs :guard (alistp a)))
(cond ((endp a) (list (cons x y)))
((equal x (car (car a))) (cons (cons x y) (cdr a)))
(t (cons (car a) (bind-equal x y (cdr a))))))
(defun bind-all (keys vals a)
"The alist whose domain is A's range, and whose range is A's domain."
(declare (xargs :guard (and (true-listp vals)
(eqlable-listp keys)
(eqlable-alistp a))))
(cond ((endp keys) a)
((endp vals) a)
(t (bind (car keys) (car vals)
(bind-all (cdr keys) (cdr vals) a)))))
(defun bind-all-eq (keys vals a)
"The alist whose domain is A's range, and whose range is A's domain."
(declare (xargs :guard (and (true-listp vals)
(symbol-listp keys)
(symbol-alistp a))))
(cond ((endp keys) a)
((endp vals) a)
(t (bind-eq (car keys) (car vals)
(bind-all-eq (cdr keys) (cdr vals) a)))))
(defun bind-all-equal (keys vals a)
"The alist whose domain is A's range, and whose range is A's domain."
(declare (xargs :guard (and (true-listp keys)
(true-listp vals)
(alistp a))))
(cond ((endp keys) a)
((endp vals) a)
(t (bind-equal (car keys) (car vals)
(bind-all-equal (cdr keys) (cdr vals) a)))))
(defun binding (x a)
"The value bound to X in alist A."
(declare (xargs :guard (and (alistp a)
(or (eqlablep x)
(eqlable-alistp a)))))
(cdr (assoc x a)))
(defun binding-eq (x a)
"The value bound to X in alist A."
(declare (xargs :guard (and (alistp a)
(or (symbolp x)
(symbol-alistp a)))))
(cdr (assoc-eq x a)))
(defun binding-equal (x a)
"The value bound to X in alist A."
(declare (xargs :guard (alistp a)))
(cdr (assoc-equal x a)))
(defun bound? (x a)
"The value bound to X in alist A."
(declare (xargs :guard (and (alistp a)
(or (eqlablep x) (eqlable-alistp a)))))
(consp (assoc x a)))
(defun bound?-eq (x a)
"The value bound to X in alist A."
(declare (xargs :guard (and (alistp a)
(or (symbolp x) (symbol-alistp a)))))
(consp (assoc-eq x a)))
(defun bound?-equal (x a)
"The value bound to X in alist A."
(declare (xargs :guard (alistp a)))
(consp (assoc-equal x a)))
(defun all-bound? (l a)
"Are all elements of list L bound in alist A?"
(declare (xargs :guard (and (true-listp l)
(alistp a)
(or (eqlable-listp l)
(eqlable-alistp a)))))
(cond ((endp l) t)
(t (and (bound? (car l) a)
(all-bound? (cdr l) a)))))
(defun all-bound?-eq (l a)
"Are all elements of list L bound in alist A?"
(declare (xargs :guard (and (true-listp l)
(alistp a)
(or (symbol-listp l)
(symbol-alistp a)))))
(cond ((endp l) t)
(t (and (bound?-eq (car l) a)
(all-bound?-eq (cdr l) a)))))
(defun all-bound?-equal (l a)
"Are all elements of list L bound in alist A?"
(declare (xargs :guard (and (true-listp l)
(alistp a))))
(cond ((endp l) t)
(t (and (bound?-equal (car l) a)
(all-bound?-equal (cdr l) a)))))
(defun all-bindings (l a)
"The list of bindings of elements of list L in alist A."
(declare (xargs :guard (and (true-listp l)
(alistp a)
(or (eqlable-listp l)
(eqlable-alistp a)))))
(cond ((endp l) nil)
((bound? (car l) a)
(cons (binding (car l) a)
(all-bindings (cdr l) a)))
(t (all-bindings (cdr l) a))))
(defun all-bindings-eq (l a)
"The list of bindings of elements of list L in alist A."
(declare (xargs :guard (and (true-listp l)
(alistp a)
(or (symbol-listp l)
(symbol-alistp a)))))
(cond ((endp l) nil)
((bound?-eq (car l) a)
(cons (binding-eq (car l) a)
(all-bindings-eq (cdr l) a)))
(t (all-bindings-eq (cdr l) a))))
(defun all-bindings-equal (l a)
"The list of bindings of elements of list L in alist A."
(declare (xargs :guard (and (true-listp l)
(alistp a))))
(cond ((endp l) nil)
((bound?-equal (car l) a)
(cons (binding-equal (car l) a)
(all-bindings-equal (cdr l) a)))
(t (all-bindings-equal (cdr l) a))))
(defun domain (a)
"The list of CARs of an alist."
(declare (xargs :guard (alistp a)))
(strip-cars a))
(defun domain-restrict (l a)
"An alist containing only those pairs in A whose CAR is in L."
(declare (xargs :guard (and (eqlable-listp l)
(eqlable-alistp a))))
(cond ((endp a) nil)
((member (car (car a)) l)
(cons (car a) (domain-restrict l (cdr a))))
(t (domain-restrict l (cdr a)))))
(defun domain-restrict-eq (l a)
"An alist containing only those pairs in A whose CAR is in L."
(declare (xargs :guard (and (symbol-listp l)
(symbol-alistp a))))
(cond ((endp a) nil)
((member-eq (car (car a)) l)
(cons (car a) (domain-restrict-eq l (cdr a))))
(t (domain-restrict-eq l (cdr a)))))
(defun domain-restrict-equal (l a)
"An alist containing only those pairs in A whose CAR is in L."
(declare (xargs :guard (and (true-listp l)
(alistp a))))
(cond ((endp a) nil)
((member-equal (car (car a)) l)
(cons (car a) (domain-restrict-equal l (cdr a))))
(t (domain-restrict-equal l (cdr a)))))
(defun range (a)
"The list of CDRs of an alist."
(declare (xargs :guard (alistp a)))
(strip-cdrs a))
(defun rembind (x a)
"The alist derived from A by removing any binding of X."
(declare (xargs :guard (and (alistp a)
(or (eqlablep x)
(eqlable-alistp a)))))
(cond ((endp a) nil)
((eql x (car (car a))) (rembind x (cdr a)))
(t (cons (car a) (rembind x (cdr a))))))
(defun rembind-eq (x a)
"The alist derived from A by removing any binding of X."
(declare (xargs :guard (and (alistp a)
(or (symbolp x)
(symbol-alistp a)))))
(cond ((endp a) nil)
((eq x (car (car a))) (rembind-eq x (cdr a)))
(t (cons (car a) (rembind-eq x (cdr a))))))
(defun rembind-equal (x a)
"The alist derived from A by removing any binding of X."
(declare (xargs :guard (alistp a)))
(cond ((endp a) nil)
((equal x (car (car a))) (rembind-equal x (cdr a)))
(t (cons (car a) (rembind-equal x (cdr a))))))
(defun rembind-all (l a)
(declare (xargs :Guard (and (eqlable-listp l)
(eqlable-alistp a))))
(cond ((endp l) a)
(t (rembind (car l) (rembind-all (cdr l) a)))))
(defun rembind-all-eq (l a)
(declare (xargs :Guard (and (symbol-listp l)
(symbol-alistp a))))
(cond ((endp l) a)
(t (rembind-eq (car l) (rembind-all-eq (cdr l) a)))))
(defun rembind-all-equal (l a)
(declare (xargs :Guard (and (true-listp l)
(alistp a))))
(cond ((endp l) a)
(t (rembind-equal (car l) (rembind-all-equal (cdr l) a)))))
(defun collect-bound (l a)
"Collect the sublist of L bound in A."
(declare (xargs :guard (and (eqlable-listp l)
(eqlable-alistp a))))
(cond ((endp l) nil)
((bound? (car l) a)
(cons (car l) (collect-bound (cdr l) a)))
(t (collect-bound (cdr l) a))))
(defun collect-bound-eq (l a)
"Collect the sublist of L bound in A."
(declare (xargs :guard (and (symbol-listp l)
(symbol-alistp a))))
(cond ((endp l) nil)
((bound?-eq (car l) a)
(cons (car l) (collect-bound-eq (cdr l) a)))
(t (collect-bound-eq (cdr l) a))))
(defun collect-bound-equal (l a)
"Collect the sublist of L bound in A."
(declare (xargs :guard (and (true-listp l)
(alistp a))))
(cond ((endp l) nil)
((bound?-equal (car l) a)
(cons (car l) (collect-bound-equal (cdr l) a)))
(t (collect-bound-equal (cdr l) a))))
(defun bind-pairs (a1 a2)
(declare (xargs :guard (and (eqlable-alistp a1)
(eqlable-alistp a2))))
(cond ((endp a1) a2)
(t (bind (caar a1) (cdar a1) (bind-pairs (cdr a1) a2)))))
(defun bind-pairs-eq (a1 a2)
(declare (xargs :guard (and (symbol-alistp a1)
(symbol-alistp a2))))
(cond ((endp a1) a2)
(t (bind-eq (caar a1) (cdar a1) (bind-pairs-eq (cdr a1) a2)))))
(defun bind-pairs-equal (a1 a2)
(declare (xargs :guard (and (alistp a1)
(alistp a2))))
(cond ((endp a1) a2)
(t (bind-equal (caar a1) (cdar a1) (bind-pairs-equal (cdr a1) a2)))))
(defun alist-compose-domain (dom a1 a2)
"X is bound to Z in (ALIST-COMPOSE-DOMAIN DOM A1 A2) if X occurs in
DOM, X is bound in A1, and there exists a Y such that
(BINDING X A1) = Y, and (BINDING Y A2) = Z."
(declare (xargs :guard (and (eqlable-listp dom)
(eqlable-alistp a1)
(eqlable-alistp a2))
:verify-guards nil))
(cond ((endp dom) nil)
(t (let ((pair1 (assoc (car dom) a1)))
(if pair1
(let ((pair2 (assoc (cdr pair1) a2)))
(if pair2
(bind (car dom) (cdr pair2)
(alist-compose-domain (cdr dom) a1 a2))
(alist-compose-domain (cdr dom) a1 a2)))
(alist-compose-domain (cdr dom) a1 a2))))))
(local (defthm alistp-alist-compose-domain
(implies (alistp a1)
(alistp (alist-compose-domain dom a1 a2)))))
(local (defthm eqlable-alistp-alist-compose-domain
(implies (and (eqlable-listp dom)
(alistp a1))
(eqlable-alistp (alist-compose-domain dom a1 a2)))))
(local (defthm eqlable-alistp-bind
(implies (and (eqlablep x)
(eqlable-alistp a))
(eqlable-alistp (bind x y a)))))
(local
(defthm assoc-consp-or-nil
(implies (alistp a)
(or (consp (assoc x a))
(equal (assoc x a) nil)))
:rule-classes :type-prescription))
(verify-guards alist-compose-domain)
(defun alist-compose (a1 a2)
"X is bound to Z in (ALIST-COMPOSE A1 A2) if X is bound
in A1, and there exists a Y such that
(BINDING X A1) = Y, and (BINDING Y A2) = Z."
(declare (xargs :guard (and (eqlable-alistp a1)
(eqlable-alistp a2))))
(alist-compose-domain (domain a1) a1 a2))
(defun alist-compose-domain-eq (dom a1 a2)
"X is bound to Z in (ALIST-COMPOSE-DOMAIN DOM A1 A2) if X occurs in
DOM, X is bound in A1, and there exists a Y such that
(BINDING X A1) = Y, and (BINDING Y A2) = Z."
(declare (xargs :guard (and (symbol-listp dom)
(symbol-alistp a1)
(symbol-alistp a2))
:verify-guards nil))
(cond ((endp dom) nil)
(t (let ((pair1 (assoc-eq (car dom) a1)))
(if pair1
(let ((pair2 (assoc-eq (cdr pair1) a2)))
(if pair2
(bind-eq (car dom) (cdr pair2)
(alist-compose-domain-eq (cdr dom) a1 a2))
(alist-compose-domain-eq (cdr dom) a1 a2)))
(alist-compose-domain-eq (cdr dom) a1 a2))))))
(local (defthm alistp-alist-compose-domain-eq
(implies (alistp a1)
(alistp (alist-compose-domain-eq dom a1 a2)))))
(local (defthm symbol-alistp-alist-compose-domain-eq
(implies (and (symbol-listp dom)
(alistp a1))
(symbol-alistp (alist-compose-domain-eq dom a1 a2)))))
(local (defthm symbol-alistp-bind-equal
(implies (and (symbolp x)
(symbol-alistp a))
(symbol-alistp (bind-equal x y a)))))
(verify-guards alist-compose-domain-eq)
(defun alist-compose-eq (a1 a2)
"X is bound to Z in (ALIST-COMPOSE A1 A2) if X is bound
in A1, and there exists a Y such that
(BINDING X A1) = Y, and (BINDING Y A2) = Z."
(declare (xargs :guard (and (symbol-alistp a1)
(symbol-alistp a2))))
(alist-compose-domain-eq (domain a1) a1 a2))
(defun alist-compose-domain-equal (dom a1 a2)
"X is bound to Z in (ALIST-COMPOSE-DOMAIN DOM A1 A2) if X occurs in
DOM, X is bound in A1, and there exists a Y such that
(BINDING X A1) = Y, and (BINDING Y A2) = Z."
(declare (xargs :guard (and (true-listp dom)
(alistp a1)
(alistp a2))
:verify-guards nil))
(cond ((endp dom) nil)
(t (let ((pair1 (assoc-equal (car dom) a1)))
(if pair1
(let ((pair2 (assoc-equal (cdr pair1) a2)))
(if pair2
(bind-equal (car dom) (cdr pair2)
(alist-compose-domain-equal (cdr dom) a1 a2))
(alist-compose-domain-equal (cdr dom) a1 a2)))
(alist-compose-domain-equal (cdr dom) a1 a2))))))
(local (defthm alistp-alist-compose-domain-equal
(implies (alistp a1)
(alistp (alist-compose-domain-equal dom a1 a2)))))
(local (defthm alistp-bind-equal
(implies (alistp a)
(alistp (bind-equal x y a)))))
(local
(defthm assoc-equal-consp-or-nil
(implies (alistp a)
(or (consp (assoc-equal x a))
(equal (assoc-equal x a) nil)))
:rule-classes :type-prescription))
(verify-guards alist-compose-domain-equal)
(defun alist-compose-equal (a1 a2)
"X is bound to Z in (ALIST-COMPOSE A1 A2) if X is bound
in A1, and there exists a Y such that
(BINDING X A1) = Y, and (BINDING Y A2) = Z."
(declare (xargs :guard (and (alistp a1)
(alistp a2))))
(alist-compose-domain-equal (domain a1) a1 a2))
(deftheory alist-defuns
(set-difference-theories (current-theory :here)
(current-theory 'alist-defuns-section)))
|