File: perm.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (60 lines) | stat: -rw-r--r-- 1,201 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
; (certify-book "perm")

(in-package "ACL2")

(defun rm (e x)
  (if (consp x)
      (if (equal e (car x))
          (cdr x)
          (cons (car x) (rm e (cdr x))))
      nil))

(defun perm (x y)
  (if (consp x)
      (and (member (car x) y)
           (perm (cdr x) (rm (car x) y)))
      (not (consp y))))

; The following could be proved right now.
; (local
;  (defthm perm-reflexive
;    (perm x x)))

(local
 (defthm perm-cons
   (implies (member a x)
            (equal (perm x (cons a y))
                   (perm (rm a x) y)))
   :hints (("Goal" :induct (perm x y)))))

(local
 (defthm perm-symmetric
   (implies (perm x y) (perm y x))))

(local
 (defthm member-rm
   (implies (member a (rm b x)) (member a x))))

(local
 (defthm perm-member
   (implies (and (perm x y)
                 (member a x))
            (member a y))))

(local
 (defthm comm-rm
   (equal (rm a (rm b x)) (rm b (rm a x)))))

(local
 (defthm perm-rm
   (implies (perm x y)
            (perm (rm a x) (rm a y)))))

; We now prove this because we give a hint.

(local
 (defthm perm-transitive
   (implies (and (perm x y) (perm y z)) (perm x z))
   :hints (("Goal" :induct (and (perm x y) (perm x z))))))

(defequiv perm)