1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
|
; C Library
;
; Copyright (C) 2022 Kestrel Institute (http://www.kestrel.edu)
; Copyright (C) 2022 Kestrel Technology LLC (http://kestreltechnology.com)
;
; License: A 3-clause BSD license. See the LICENSE file distributed with ACL2.
;
; Author: Alessandro Coglio (coglio@kestrel.edu)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package "C")
(include-book "computation-states")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defxdoc+ atc-symbolic-computation-states
:parents (atc-execution)
:short "Canonical representation of
the computation states for the symbolic execution."
:long
(xdoc::topstring
(xdoc::p
"Starting from a generic (symbolic) computation state,
a symbolic execution starting with @(tsee exec-fun)
will push a frame (for the function),
possibly read variables,
possibly create new variables,
possibly write existing variables,
possibly enter new scopes,
possibly exit existing scopes,
and eventually pop the frame.
Just one frame is pushed and then popped
because the symbolic execution is compositional w.r.t. functions,
i.e. the symbolic execution rewrites function calls in function bodies
using the theorems about the called functions.")
(xdoc::p
"The dynamic semantics functions that perform the above actions,
namely @(tsee push-frame), @(tsee enter-scope), @(tsee create-var), etc.,
go into the frame stack component of the computation state,
via the @(tsee compustate->frames) accessor.
That would lead to a complex symbolic term for the computation state.")
(xdoc::p
"Instead, we pull the ``additions'' to the computation state,
i.e. the added frames, scopes, and variables,
out of the computation state via the functions
@(tsee add-frame), @(tsee enter-scope), and @(tsee add-var):
the first and third one are defined below,
while the second one is from the dynamic semantics of C.
These three functions are defined to
push the frames, scopes, and variables into the computation state,
but we leave these functions disabled during symbolic execution,
so that the symbolic computation states has these additions explicit.
Thus, the symbolic computation state is
a sequence of applications of those three functions
to an initial symbolic computation state @('<compst>'):")
(xdoc::codeblock
"(add-var ... (enter-scope (add-var ... (add-frame ... <compst>)...)")
(xdoc::p
"The reason for introducing a new function @(tsee add-var),
instead of just using @(tsee create-var) (and leaving it disabled),
is that @(tsee add-var) unconditionally satisfies certain properties
that @(tsee create-var) satisfies when it does not return an error:
@(tsee add-var) unconditionally returns a computation state,
and always ensures that the added variable is in the computation state.
During symbolic execution,
@(tsee create-var) is replaced with @(tsee add-var)
via a rule that requires @(tsee create-var) to not return an error:
in a way, @(tsee add-var) ``caches'' the aforementioned properties.
This leads to simpler rules on this kind of computation states:
for example, when @(tsee read-var) appears applied to @(tsee add-var)
during symbolic execution,
if the two variables are equal,
we can readily rewrite this term to the value in @(tsee add-var),
because that function guarantees the variable to exist with that value.
In contrast, if @(tsee read-var) appeared applied to @(tsee create-var),
additional hypotheses would be needed (and would have to be discharged)
saying that @(tsee create-var) succeeds.")
(xdoc::p
"For a similar reason, we introduce a function @(tsee update-var)
that replaces @(tsee write-var) when the latter succeeds,
and that is easier and more efficient to manipulate
during symbolic execution.")
(xdoc::p
"Given these canonical representations of computation states,
we prove theorems that describe
the effect of @(tsee push-frame) and other functions
on computation states of this form,
where the effect is another state in that form.
These theorems are enabled during symbolic execution,
and manipulate the computation state.")
(xdoc::p
"In the presence of C loops,
which are represented by ACL2 recursive functions,
we generate theorems that describe the execution of the loops
starting from generic (symbolic) computation states.
The execution of a loop does not push a new frame,
because the loop executes in the frame of the enclosing C function.
In this case, the initial generic computation state
includes part of the frame of the enclosing C function;
the execution of the loop may add new scopes and variables,
so in this case the symbolic computtion state looks like")
(xdoc::codeblock
"(add-var ... (add-var ... (enter-scope <compst>)...)")
(xdoc::p
"In fact, the innermost function there
must be @(tsee enter-scope) (it cannot be @(tsee add-var)),
because the loops we generate have compound statements as bodies,
which create new scopes.")
(xdoc::p
"The initial symbolic computation state @('<compst>')
contains the initial part of the frame
of the function that contains the loop;
the loop extends the frame with @(tsee enter-scope) and @(tsee add-var)
as shown above.
But the structure of the initial part of the frame
is not known in the symbolic execution for the loop itself:
it is just the initial @('<compst>').
However, the loop may access variables in that initial part of the frame:
the theorem generated for the loop includes hypotheses
saying that @(tsee read-var) applied to @('<compst>')
for certain variables (i.e. identifiers)
yields values of certain C types:
this way, any of these @(tsee read-var) calls
arising during symbolic execution will match those hypotheses.
A loop may write to those variables:
in this case, after replacing @(tsee write-var) with @(tsee update-var)
right away as explained earlier,
the @(tsee update-var) will go through
all the @(tsee add-var) and @(tsee enter-scope) layers shown above,
and reach @('<compst>'), where it is not further reducible.
This may happen for several different variables,
leading to states of the form")
(xdoc::codeblock
"(... (enter-scope (add-var ... (update-var ... (update-var ... <compst>)...)")
(xdoc::p
"Below we introduce rules to order these @(tsee update-var)s
according to the variables,
maintaining a canonical form.")
(xdoc::p
"Note that this form of the computation states
serves to represent side effects performed by the loop
on the initial computation state.
The same approach is used to generate proofs for
more general side effects, e.g. on the heap, as explained below.")
(xdoc::p
"A computation state has a heap,
whose objects (particularly arrays and structures)
may be updated during the symbolic execution.
We represent these updates via the function @(tsee update-object),
which is similar to @(tsee write-object)
but always satisfies additional properties:
the relation between @(tsee update-object) and @(tsee write-object)
is similar to the one between @(tsee update-var) and @(tsee write-var)
and to the one between @(tsee add-var) and @(tsee create-var),
explained above.")
(xdoc::p
"Heap objects may be updated by C functions and C loops,
so they need to be incorporated in both of
the symbolic computation state representations described above.
We push the @(tsee update-object) past all the other functions,
leading to states of the form")
(xdoc::codeblock
"(... (add-frame (update-object ... (update-object ... <compst>)...)")
(xdoc::p
"for C functions and of the form")
(xdoc::codeblock
"(... (enter-scope (add-var ... (update-object ... <compst>)...)")
(xdoc::p
"for C loops.
We order the @(tsee update-object) calls
according to their first argument (i.e. the object designator).
Note that for a C function this first argument is
@(tsee value-pointer->designator) applied to an ACL2 variable,
while for a C loop it is
@(tsee value-pointer->designator) applied to
a @('(read-var <identifier> ...)').
These two kinds of first arguments never appear together,
i.e. in the same theorem,
because each theorem is for either a C function or a C loop.
We prove rules that order @(tsee update-object)s
according to the symbols,
which apply to proofs of theorems of C functions;
and we prove rules that order @(tsee update-object)s
according to the identifiers,
which apply to proofs of theorems of C loops.")
(xdoc::p
"After introducing the ACL2 functions
that represent the canonical symbolic computation states,
we provide theorems expressing how
functions like @(tsee push-frame) transform those computation states,
maintaining their canonical form."))
:order-subtopics t
:default-parent t)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define add-frame ((fun identp) (compst compustatep))
:returns (new-compst compustatep)
:short (xdoc::topstring
"Add a frame to a "
(xdoc::seetopic "atc-symbolic-computation-states"
"canonical representation of computation states")
".")
:long
(xdoc::topstring
(xdoc::p
"This adds a frame with an empty scope."))
(push-frame (make-frame :function fun :scopes (list nil))
compst)
:hooks (:fix))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define add-var ((var identp) (val valuep) (compst compustatep))
:guard (> (compustate-frames-number compst) 0)
:returns (new-compst compustatep)
:short (xdoc::topstring
"Add a variable to a "
(xdoc::seetopic "atc-symbolic-computation-states"
"canonical representation of computation states")
".")
:long
(xdoc::topstring
(xdoc::p
"This is like @(tsee create-var), but it does not return an error:
it always adds the variable to the current scope.
If the variable does not already exist in the current scope,
this is equivalent to @(tsee create-var), as proved later."))
(b* ((frame (top-frame compst))
(scopes (frame->scopes frame))
(scope (car scopes))
(new-scope (omap::update (ident-fix var) (value-fix val) scope))
(new-scopes (cons new-scope (cdr scopes)))
(new-frame (change-frame frame :scopes new-scopes))
(new-compst (push-frame new-frame (pop-frame compst))))
new-compst)
:hooks (:fix))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define update-var ((var identp) (val valuep) (compst compustatep))
:guard (> (compustate-frames-number compst) 0)
:returns (new-compst compustatep)
:short (xdoc::topstring
"Update a variable in a "
(xdoc::seetopic "atc-symbolic-computation-states"
"canonical representation of computation states")
".")
:long
(xdoc::topstring
(xdoc::p
"This is like @(tsee write-var), but it does not return an error.
First, its guard requires at least one frame,
so we always get a frame via @(tsee top-frame).
(Actually, given that this function is only used for symbolic execution,
it does not need to be guard-verified;
the same applies to @(tsee add-frame) and @(tsee add-var),
but for now we keep them guard-verified.)
Second, as we go through the scopes,
when we reach the outermost scope without finding the variable,
we add it to that scope anyhow:
this ensures that the variable is always there,
which simplifies other rules;
we check that the variable is actually there
when we turn @(tsee write-var) into @(tsee update-var),
in another rule.
Third, we do not check the type of the new value
against the type of the old value if the variable exists,
and instead we unconditionally overwrite the old value with the new value:
this ensures that the new value is always there,
which simplified other rules;
we check that the types match
when we turn @(tsee write-var) into @(tsee update-var),
in another rule."))
(b* ((frame (top-frame compst))
(scopes (frame->scopes frame))
(new-scopes (update-var-aux var val scopes))
(new-frame (change-frame frame :scopes new-scopes)))
(push-frame new-frame (pop-frame compst)))
:hooks (:fix)
:prepwork
((define update-var-aux ((var identp) (val valuep) (scopes scope-listp))
:returns (new-scopes scope-listp)
:parents nil
(b* (((when (endp scopes)) nil)
(scope (scope-fix (car scopes)))
(pair (omap::in (ident-fix var) scope))
((when (or (consp pair)
(endp (cdr scopes))))
(cons (omap::update (ident-fix var) (value-fix val) scope)
(scope-list-fix (cdr scopes)))))
(cons scope (update-var-aux var val (cdr scopes))))
:hooks (:fix)
///
(defret consp-of-update-var-aux
(equal (consp new-scopes)
(consp scopes))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define update-object ((objdes objdesignp) (val valuep) (compst compustatep))
:returns (new-compst compustatep)
:short (xdoc::topstring
"Update an object in a "
(xdoc::seetopic "atc-symbolic-computation-states"
"canonical representation of computation states")
".")
:long
(xdoc::topstring
(xdoc::p
"This is like @(tsee write-object),
but it does not return an error,
and it only really handles top-level object designators,
by taking the base address of the object designators,
which is what we need for now.
We update the heap with the new object regardless of
whether an old object at that address exists or not,
and whether, if it exists, its type matches the new object.
This way, @(tsee update-object) always guarantees that
the object goes into the heap,
thus simplifying rules about it.
When we replace @(tsee write-object)
with @(tsee update-object),
we ensure that all the conditions mentioned above hold,
so in a way @(tsee update-object) caches the fact that
those conditions are satisfied."))
(b* ((addr (objdesign->base-address objdes))
(heap (compustate->heap compst))
(new-heap (omap::update addr (value-fix val) heap))
(new-compst (change-compustate compst :heap new-heap)))
new-compst)
:hooks (:fix))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-push-frame-rules
:short "Rules about @(tsee push-frame)."
:long
(xdoc::topstring
(xdoc::p
"In @(tsee exec-fun), a scope is initialized
and a frame is pushed with that scope.
Here we provide two theorems to turn that into a canonical representation.
Assuming that @(tsee init-scope) is rewritten
to a nest of @(tsee omap::update) calls
(as it is, because we use rules for @(tsee init-scope) that do that),
the two theorems below move the variables into @(tsee add-var) calls,
and finally turn @(tsee push-frame) into @(tsee add-frame)."))
(defruled push-frame-of-one-empty-scope
(equal (push-frame (frame fun (list nil)) compst)
(add-frame fun compst))
:enable add-frame)
(defruled push-frame-of-one-nonempty-scope
(implies (and (identp var)
(valuep val)
(scopep scope))
(equal (push-frame (frame fun (list (omap::update var val scope)))
compst)
(add-var var
val
(push-frame (frame fun (list scope)) compst))))
:enable (push-frame
top-frame
pop-frame
add-var
compustate-frames-number))
(defval *atc-push-frame-rules*
'(push-frame-of-one-empty-scope
push-frame-of-one-nonempty-scope)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-pop-frame-rules
:short "Rules about @(tsee pop-frame)."
:long
(xdoc::topstring
(xdoc::p
"The theorems about @(tsee pop-frame)
remove all the @(tsee add-var) and @(tsee enter-scope) calls
until they reach @(tsee add-frame),
with which @(tsee pop-frame) neutralizes.
No rules are needed for
computation states that start with @(tsee update-var)
because these only occur when executing loops,
which do not pop frames."))
(defruled pop-frame-of-add-frame
(implies (compustatep compst)
(equal (pop-frame (add-frame fun compst))
compst))
:enable (pop-frame add-frame))
(defruled pop-frame-of-enter-scope
(equal (pop-frame (enter-scope compst))
(pop-frame compst))
:enable (pop-frame
enter-scope
push-frame))
(defruled pop-frame-of-add-var
(equal (pop-frame (add-var var val compst))
(pop-frame compst))
:enable (pop-frame
add-var
push-frame))
(defval *atc-pop-frame-rules*
'(pop-frame-of-add-frame
pop-frame-of-enter-scope
pop-frame-of-add-var)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-enter-scope-rules
:short "Rules about @(tsee enter-scope)."
:long
(xdoc::topstring
(xdoc::p
"We do not provide any theorem about @(tsee enter-scope),
as it is part of the canonical representation of computation states.")))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-exit-scope-rules
:short "Rules about @(tsee exit-scope)."
:long
(xdoc::topstring
(xdoc::p
"The theorems about @(tsee exit-scope)
cancel it with @(tsee enter-scope)
and move it past @(tsee add-var).
No rule for @(tsee add-frame) is needed
because that case should never happen in the symbolic execution.
No rule is needed for computation states that start with @(tsee update-var)
because @(tsee update-var) is always pushed past @(tsee enter-scope)."))
(defruled exit-scope-of-enter-scope
(implies (and (compustatep compst)
(not (equal (compustate-frames-number compst) 0)))
(equal (exit-scope (enter-scope compst))
compst))
:enable (enter-scope
exit-scope
push-frame
top-frame
pop-frame
compustate-frames-number))
(defruled exit-scope-of-add-var
(equal (exit-scope (add-var var val compst))
(exit-scope compst))
:enable (exit-scope add-var))
(defval *atc-exit-scope-rules*
'(exit-scope-of-enter-scope
exit-scope-of-add-var)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-create-var-rules
:short "Rules about @(tsee create-var)."
:long
(xdoc::topstring
(xdoc::p
"The theorem about @(tsee create-var) turns that into @(tsee add-var),
provided that the variable can be created,
which we check via the function @('create-var-okp') introduced below.
Additional theorems about @('create-var-okp')
go through the layers of the computation states to check this condition.
No rule is needed for @('create-var-ok') on @(tsee update-var),
because @(tsee update-var) is pushed past the first @(see enter-scope)."))
(define create-var-okp ((var identp) (compst compustatep))
:guard (> (compustate-frames-number compst) 0)
:returns (yes/no booleanp)
:parents nil
(b* ((frame (top-frame compst))
(scopes (frame->scopes frame))
(scope (car scopes)))
(not (consp (omap::in (ident-fix var) scope))))
:hooks (:fix))
(defruled create-var-okp-of-add-frame
(create-var-okp var (add-frame fun compst))
:enable (create-var-okp add-frame))
(defruled create-var-okp-of-enter-scope
(create-var-okp var (enter-scope compst))
:enable (create-var-okp enter-scope))
(defruled create-var-okp-of-add-var
(equal (create-var-okp var (add-var var2 val compst))
(and (not (equal (ident-fix var)
(ident-fix var2)))
(create-var-okp var compst)))
:enable (create-var-okp add-var))
(defruled create-var-to-add-var
(implies (create-var-okp var compst)
(equal (create-var var val compst)
(add-var var val compst)))
:enable (create-var add-var create-var-okp))
(defval *atc-create-var-rules*
'(create-var-to-add-var
create-var-okp-of-add-frame
create-var-okp-of-enter-scope
create-var-okp-of-add-var)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-write-var-rules
:short "Rules about @(tsee write-var)."
:long
(xdoc::topstring
(xdoc::p
"The theorem about @(tsee write-var) turns it into @(tsee update-var),
similarly to @(tsee create-var) being turned into @(tsee add-var).
The condition for the replacemenet is captured by @('write-var-okp'),
for which we supply rules to go through the computation state layers.
When the computation state (meta) variable is reached,
it must be the case that there are hypotheses available
saying that reading the variable yields a value:
this happens for loop proofs, for variables created outside the loop,
which are therefore not visible as @(tsee add-var)s.
The rule is used as last resort,
only if the computation state is an ACL2 variable
(as enforced by the @(tsee syntaxp) hypothesis).")
(xdoc::p
"We also include the executable counterpart of @(tsee typep)
in the list of rules related to @(tsee write-var).
This is needed to discharge some @(tsee typep) hypotheses
that arise during symbolic execution and are applied to quoted constants.
We may arrange things in the future so that
these quoted constants do not arise
and thus there is no need for the executable counterpart of @(tsee typep)
to be included in the list of rules here."))
(define write-var-okp ((var identp) (val valuep) (compst compustatep))
:guard (> (compustate-frames-number compst) 0)
:returns (yes/no booleanp)
:parents nil
(write-var-aux-okp var val (frame->scopes (top-frame compst)))
:hooks (:fix)
:prepwork
((define write-var-aux-okp ((var identp) (val valuep) (scopes scope-listp))
:returns (yes/no booleanp)
:parents nil
(b* (((when (endp scopes)) nil)
(scope (scope-fix (car scopes)))
(pair (omap::in (ident-fix var) scope))
((when (consp pair))
(equal (type-of-value (cdr pair))
(type-of-value val))))
(write-var-aux-okp var val (cdr scopes)))
:hooks (:fix))))
(defruled write-var-okp-of-enter-scope
(equal (write-var-okp var val (enter-scope compst))
(write-var-okp var val compst))
:enable (write-var-okp
write-var-aux-okp
enter-scope))
(defruled write-var-okp-of-add-var
(equal (write-var-okp var val (add-var var2 val2 compst))
(if (equal (ident-fix var)
(ident-fix var2))
(equal (type-of-value val2)
(type-of-value val))
(write-var-okp var val compst)))
:enable (write-var-okp
write-var-aux-okp
add-var))
(defruled write-var-okp-of-update-var
(equal (write-var-okp var val (update-var var2 val2 compst))
(if (equal (ident-fix var)
(ident-fix var2))
(equal (type-of-value val2)
(type-of-value val))
(write-var-okp var val compst)))
:enable (write-var-okp
update-var)
:prep-lemmas
((defrule lemma
(implies (consp scopes)
(equal (write-var-aux-okp var
val
(update-var-aux var2
val2
scopes))
(if (equal (ident-fix var)
(ident-fix var2))
(equal (type-of-value val2)
(type-of-value val))
(write-var-aux-okp var val scopes))))
:enable (write-var-aux-okp
update-var-aux))))
(defruled write-var-okp-of-update-object
(equal (write-var-okp var val (update-object objdes obj compst))
(write-var-okp var val compst))
:enable (write-var-okp
update-object
top-frame))
(defruled write-var-okp-when-valuep-of-read-var
(implies (and (syntaxp (symbolp compst))
(equal old-val (read-var var compst))
(valuep old-val))
(equal (write-var-okp var val compst)
(equal (type-of-value val)
(type-of-value old-val))))
:enable (write-var-okp
read-var)
:prep-lemmas
((defrule lemma
(implies (and (equal old-val (read-var-aux var scopes))
(valuep old-val))
(equal (write-var-aux-okp var val scopes)
(equal (type-of-value val)
(type-of-value old-val))))
:enable (write-var-aux-okp
read-var-aux))))
(defruled write-var-to-update-var
(implies (and (not (equal (compustate-frames-number compst) 0))
(write-var-okp var val compst))
(equal (write-var var val compst)
(update-var var val compst)))
:enable (write-var-okp
write-var
update-var
errorp)
:prep-lemmas
((defrule lemma
(implies (write-var-aux-okp var val scopes)
(equal (write-var-aux var val scopes)
(update-var-aux var val scopes)))
:enable (write-var-aux-okp
write-var-aux
update-var-aux
errorp))))
(defval *atc-write-var-rules*
'(write-var-to-update-var
write-var-okp-of-enter-scope
write-var-okp-of-add-var
write-var-okp-of-update-var
write-var-okp-of-update-object
write-var-okp-when-valuep-of-read-var
(:e typep))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-read-var-rules
:short "Rules about @(tsee read-var)."
:long
(xdoc::topstring
(xdoc::p
"The theorems below about @(tsee read-var) are a bit different
because @(tsee read-var) does not return a state, but a value instead.
The first theorem skips over @(tsee enter-scope).
The second theorem
either returns the value of the encountered variable or skips over it,
based on whether the names coincide or not.
There is no theorem for @(tsee add-frame) because this situation
never happens during the symbolic execution.
The third theorem serves for variables read in loops
that are declared outside the scope of the loop,
i.e. that are represented as @(tsee update-var)s:
if the two variables are the same, the value is returned;
otherwise, we skip over the @(tsee update-var)
in search for the variable.
The fourth and fifth theorems serve to move past object updates."))
(defruled read-var-of-enter-scope
(implies (not (equal (compustate-frames-number compst) 0))
(equal (read-var var (enter-scope compst))
(read-var var compst)))
:enable (read-var
read-var-aux
enter-scope))
(defruled read-var-of-add-var
(implies (not (equal (compustate-frames-number compst) 0))
(equal (read-var var (add-var var2 val compst))
(if (equal (ident-fix var)
(ident-fix var2))
(value-fix val)
(read-var var compst))))
:enable (read-var
read-var-aux
add-var
compustate-frames-number
push-frame
top-frame))
(defruled read-var-of-update-var
(implies (not (equal (compustate-frames-number compst) 0))
(equal (read-var var (update-var var2 val2 compst))
(if (equal (ident-fix var)
(ident-fix var2))
(value-fix val2)
(read-var var compst))))
:enable (read-var
update-var)
:prep-lemmas
((defrule lemma
(implies (consp scopes)
(equal (read-var-aux var (update-var-aux var2 val2 scopes))
(if (equal (ident-fix var)
(ident-fix var2))
(value-fix val2)
(read-var-aux var scopes))))
:enable (read-var-aux
update-var-aux))))
(defruled read-var-of-update-object
(implies (not (equal (compustate-frames-number compst) 0))
(equal (read-var var (update-object objdes obj compst))
(read-var var compst)))
:enable (read-var
update-object
top-frame
compustate-frames-number))
(defval *atc-read-var-rules*
'(read-var-of-enter-scope
read-var-of-add-var
read-var-of-update-var
read-var-of-update-object)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-update-var-rules
:short "Rules about @(tsee update-var)."
:long
(xdoc::topstring
(xdoc::p
"The theorems about @(tsee update-var) push them into the states,
sometimes combining them into @(tsee add-var)s.
The first theorem pushes @(tsee update-var) into @(tsee enter-scope).
The second theorem combines @(tsee update-var) with @(tsee add-var)
if the variable is the same, otherwise it pushes @(tsee update-var) in.
There is no rule for @(tsee add-frame) because that does not happen.
The third theorem overwrites an @(tsee update-var)
with an @(tsee update-var) for the same variable.
The fourth theorem is used to arrange a nest of @(tsee update-var)s
in alphabetical order of the variable names:
it swaps two @(tsee update-var)s when the outer one
has an larger variable than the inner one.
Note that we need to disable loop stoppers for this rule,
otherwise ACL2 may not apply it based on the written value terms,
which are irrelevant to this normalization
based on alphabetical order.
Note the @(tsee syntaxp) hypotheses
that require the identifiers (i.e. variable names)
to have the form described in @(see atc-identifier-rules).
Finally, the fifth theorem serves to simplify the case in which
a variable is written with its current value;
this case may occur when proving the base case of a loop.
This theorem is phrased perhaps more generally than expected,
with two different computation state variables,
instead of the simpler form in @('update-var-of-read-var-same-lemma'):
the reason is that sometimes during symbolic execution
a pattern arises of the form
@('(update-var var (read-var var compst) <other-compst>)'),
where @('<other-compst>') is a term
that is not just the @('compst') variable:
the rule binds @('compst1') to that.
This fifth theorem has a @(tsee syntaxp) hypothesis
requiring the computation state argument of @(tsee read-var)
to be a variable;
this may not be actually necessary,
but for now we include it just to make sure."))
(defruled update-var-of-enter-scope
(equal (update-var var val (enter-scope compst))
(enter-scope (update-var var val compst)))
:enable (update-var
update-var-aux
enter-scope))
(defruled update-var-of-add-var
(equal (update-var var val (add-var var2 val2 compst))
(if (equal (ident-fix var)
(ident-fix var2))
(add-var var2 val compst)
(add-var var2 val2 (update-var var val compst))))
:enable (update-var
update-var-aux
add-var))
(defruled update-var-of-update-var-same
(equal (update-var var val (update-var var val2 compst))
(update-var var val compst))
:enable (update-var
update-var-aux)
:prep-lemmas
((defrule lemma
(equal (update-var-aux var val (update-var-aux var val2 scopes))
(update-var-aux var val scopes))
:enable update-var-aux)))
(defruled update-var-of-update-var-less
(implies (and (syntaxp (and (consp var2)
(eq (car var2) 'ident)
(quotep (cadr var2))))
(syntaxp (and (consp var)
(eq (car var) 'ident)
(quotep (cadr var))))
(<< (ident-fix var2)
(ident-fix var))
(not (equal (compustate-frames-number compst) 0)))
(equal (update-var var val (update-var var2 val2 compst))
(update-var var2 val2 (update-var var val compst))))
:rule-classes ((:rewrite :loop-stopper nil))
:enable (update-var
<<)
:prep-lemmas
((defrule lemma
(implies (not (equal (ident-fix var)
(ident-fix var2)))
(equal (update-var-aux var val (update-var-aux var2 val2 scopes))
(update-var-aux var2 val2 (update-var-aux var val scopes))))
:enable update-var-aux)))
(defruled update-var-of-read-var-same
(implies (and (syntaxp (symbolp compst))
(compustatep compst1)
(valuep (read-var var compst))
(equal (read-var var compst)
(read-var var compst1)))
(equal (update-var var (read-var var compst) compst1)
compst1))
:use (:instance update-var-of-read-var-same-lemma (compst compst1))
:prep-lemmas
((defruled update-var-aux-of-read-var-aux-same
(implies (valuep (read-var-aux var scopes))
(equal (update-var-aux var (read-var-aux var scopes) scopes)
(scope-list-fix scopes)))
:enable (read-var-aux
update-var-aux
omap::update-of-cdr-of-in-when-in)
:prep-lemmas
((defruled omap::update-of-cdr-of-in-when-in
(implies (consp (omap::in k m))
(equal (omap::update k (cdr (omap::in k m)) m)
m))
:induct (omap::in k m)
:enable omap::in)))
(defruled update-var-of-read-var-same-lemma
(implies (and (compustatep compst)
(valuep (read-var var compst)))
(equal (update-var var (read-var var compst) compst)
compst))
:enable (read-var
update-var
update-var-aux-of-read-var-aux-same
top-frame
push-frame
pop-frame
compustate-frames-number))))
(defval *atc-update-var-rules*
'(update-var-of-enter-scope
update-var-of-add-var
update-var-of-update-var-same
update-var-of-update-var-less
update-var-of-read-var-same)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-write-object-rules
:short "Rules about @(tsee write-object)."
:long
(xdoc::topstring
(xdoc::p
"The theorem about @(tsee write-object) turns it into @(tsee update-object),
similarly to how @(tsee write-var) is turned into @(tsee update-var).
The condition for the replacement is captured by @('write-object-okp'),
for which we supply rules to go through all the computation state layers.
When the computation state (meta) variable is reached,
it must be the case that there are hypotheses available
saying that reading the object
yields a value of appropriate type and length.
The rule is used as last resort,
only if the computation state is an ACL2 variable
(as enforced by the @(tsee syntaxp) hypothesis).")
(xdoc::p
"For now we only support top-level object designators,
but we plan to extend things to other object designators.")
(xdoc::p
"Since @(tsee update-object) takes the base address,
the rules @('write-object-okp-of-update-object-same')
and @('write-object-okp-when-valuep-of-read-object')
need the hypothesis that the object designator is a top-level one.")
(xdoc::p
"We include the rule for commutativity of @(tsee object-disjointp),
so it does not matter the order of the disjoint objects
in the hypotheses of the rules vs. the available hypothesis
during the symbolic execution
(i.e. commutativity normalizes them, via its loop stopper)."))
(define write-object-okp ((objdes objdesignp)
(val valuep)
(compst compustatep))
:returns (yes/no booleanp)
:parents nil
(b* (((unless (objdesign-case objdes :address)) nil)
(addr (objdesign-address->get objdes))
(heap (compustate->heap compst))
(addr+obj (omap::in addr heap))
((unless (consp addr+obj)) nil)
(obj (cdr addr+obj))
((unless (equal (type-of-value val)
(type-of-value obj)))
nil))
t)
:hooks (:fix))
(defruled write-object-okp-of-add-frame
(equal (write-object-okp objdes val (add-frame fun compst))
(write-object-okp objdes val compst))
:enable (write-object-okp
add-frame
push-frame))
(defruled write-object-okp-of-enter-scope
(equal (write-object-okp objdes val (enter-scope compst))
(write-object-okp objdes val compst))
:enable (write-object-okp
enter-scope
push-frame
pop-frame))
(defruled write-object-okp-of-add-var
(equal (write-object-okp objdes val (add-var var val2 compst))
(write-object-okp objdes val compst))
:enable (write-object-okp
add-var
push-frame
pop-frame))
(defruled write-object-okp-of-update-var
(equal (write-object-okp objdes val (update-var var val2 compst))
(write-object-okp objdes val compst))
:enable (write-object-okp
update-var
push-frame
pop-frame))
(defruled write-object-okp-of-update-object-same
(implies
(equal (objdesign-kind objdes) :address)
(equal (write-object-okp objdes val (update-object objdes val2 compst))
(equal (type-of-value val)
(type-of-value val2))))
:enable (write-object-okp
update-object
objdesign->base-address))
(defruled write-object-okp-of-update-object-disjoint
(implies
(object-disjointp objdes objdes2)
(equal (write-object-okp objdes val (update-object objdes2 val2 compst))
(write-object-okp objdes val compst)))
:enable (write-object-okp
update-object
object-disjointp
objdesign->base-address))
(defruled write-object-okp-when-valuep-of-read-object
(implies (and (syntaxp (symbolp compst))
(equal (objdesign-kind objdes) :address)
(equal old-val (read-object objdes compst))
(valuep old-val))
(equal (write-object-okp objdes val compst)
(equal (type-of-value val)
(type-of-value old-val))))
:enable (write-object-okp
read-object))
(defruled write-object-to-update-object
(implies (write-object-okp objdes val compst)
(equal (write-object objdes val compst)
(update-object objdes val compst)))
:enable (write-object
write-object-okp
update-object
objdesign->base-address))
(defval *atc-write-object-rules*
'(write-object-to-update-object
write-object-okp-of-add-frame
write-object-okp-of-enter-scope
write-object-okp-of-add-var
write-object-okp-of-update-var
write-object-okp-of-update-object-same
write-object-okp-of-update-object-disjoint
write-object-okp-when-valuep-of-read-object
object-disjointp-commutative
valuep-when-uchar-arrayp
valuep-when-schar-arrayp
valuep-when-ushort-arrayp
valuep-when-sshort-arrayp
valuep-when-uint-arrayp
valuep-when-sint-arrayp
valuep-when-ulong-arrayp
valuep-when-slong-arrayp
valuep-when-ullong-arrayp
valuep-when-sllong-arrayp
value-kind-when-uchar-arrayp
value-kind-when-schar-arrayp
value-kind-when-ushort-arrayp
value-kind-when-sshort-arrayp
value-kind-when-uint-arrayp
value-kind-when-sint-arrayp
value-kind-when-ulong-arrayp
value-kind-when-slong-arrayp
value-kind-when-ullong-arrayp
value-kind-when-sllong-arrayp)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-read-object-rules
:short "Rules about @(tsee read-object)."
:long
(xdoc::topstring
(xdoc::p
"The theorems about @(tsee read-object)
skip over all the functions that represent the computation states,
except for possibly @(tsee update-object):
this is similar to the interaction
between @(tsee read-var) and @(tsee update-var).")
(xdoc::p
"We include the rule for commutativity of @(tsee object-disjointp),
so it does not matter the order of the disjoint objects
in the hypotheses of the rules vs. the available hypothesis
during the symbolic execution
(i.e. commutativity normalizes them, via its loop stopper)."))
(defruled read-object-of-add-frame
(equal (read-object objdes (add-frame fun compst))
(read-object objdes compst))
:enable (add-frame push-frame read-object))
(defruled read-object-of-enter-scope
(equal (read-object objdes (enter-scope compst))
(read-object objdes compst))
:enable (enter-scope
push-frame
pop-frame
read-object))
(defruled read-object-of-add-var
(equal (read-object objdes (add-var var val compst))
(read-object objdes compst))
:enable (add-var
push-frame
pop-frame
read-object))
(defruled read-object-of-update-var
(equal (read-object objdes (update-var var val compst))
(read-object objdes compst))
:enable (update-var
push-frame
pop-frame
read-object))
(defruled read-object-of-update-object-same
(implies (equal (objdesign-kind objdes) :address)
(equal (read-object objdes (update-object objdes val compst))
(value-fix val)))
:enable (read-object
update-object
objdesign->base-address))
(defruled read-object-of-update-object-disjoint
(implies (object-disjointp objdes objdes2)
(equal (read-object objdes (update-object objdes2 val compst))
(read-object objdes compst)))
:enable (read-object
update-object
object-disjointp
objdesign->base-address))
(defval *atc-read-object-rules*
'(read-object-of-add-frame
read-object-of-enter-scope
read-object-of-add-var
read-object-of-update-var
read-object-of-update-object-same
read-object-of-update-object-disjoint
object-disjointp-commutative)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-update-object-rules
:short "Rules about @(tsee update-object)."
:long
(xdoc::topstring
(xdoc::p
"We have rules to unconditionally push @(tsee update-object)
through all the layers except @(tsee update-object).")
(xdoc::p
"When @(tsee update-object) is applied to @(tsee update-object),
we have rules similar to the ones for @(tsee update-var).
If the two object designators are the same, we overwrite the object.
When the object designators differ,
we swap the @(tsee update-var)s
if the right pointer is smaller than the left one,
where smaller is a syntactic check:
when the two pointer arguments are symbols
(which happens in the proofs of C functions),
we compare the symbols;
when the two pointer arguments are @(tsee read-var) calls
(which happens in the proofs of C loops),
we compare the identifier terms,
which boils down to comparing the variable names.
Either way, we normalize the nests of @(tsee update-object) calls
by ordering them according to the pointer.
We are talking about pointers here, and not object designators,
because, as mentioned in @(see atc-symbolic-computation-states),
during symbolic execution the object designators in question
have the form @('(value-pointer->designator <pointer>)'),
which is what the @(tsee syntaxp) hypotheses below are based on.")
(xdoc::p
"We also include a rule saying that
updating an object with the existing one is a no-op.
This is similar to @('update-var-of-read-var').
In particular, it uses two possibly different computation states,
for the reasons explained for @('update-var-of-read-var').")
(xdoc::p
"We include the rule for commutativity of @(tsee object-disjointp),
so it does not matter the order of the disjoint objects
in the hypotheses of the rules vs. the available hypothesis
during the symbolic execution
(i.e. commutativity normalizes them, via its loop stopper)."))
(defruled update-object-of-add-frame
(equal (update-object objdes obj (add-frame fun compst))
(add-frame fun (update-object objdes obj compst)))
:enable (update-object
add-frame
push-frame))
(defruled update-object-of-enter-scope
(equal (update-object objdes obj (enter-scope compst))
(enter-scope (update-object objdes obj compst)))
:enable (update-object
enter-scope
push-frame
pop-frame
top-frame))
(defruled update-object-of-add-var
(equal (update-object objdes obj (add-var var val compst))
(add-var var val (update-object objdes obj compst)))
:enable (update-object
add-var
push-frame
pop-frame
top-frame))
(defruled update-object-of-update-var
(equal (update-object objdes obj (update-var var val compst))
(update-var var val (update-object objdes obj compst)))
:enable (update-object
update-var
push-frame
pop-frame
top-frame))
(defruled update-object-of-update-object-same
(equal (update-object objdes obj (update-object objdes obj2 compst))
(update-object objdes obj compst))
:enable update-object)
(defruled update-object-of-update-object-less-symbol
(implies
(and (syntaxp (and (ffn-symb-p objdes 'value-pointer->designator)
(ffn-symb-p objdes2 'value-pointer->designator)
(b* ((ptr (fargn objdes 1))
(ptr2 (fargn objdes2 1)))
(and (symbolp ptr)
(symbolp ptr2)
(symbol< ptr2 ptr)))))
(object-disjointp objdes objdes2))
(equal (update-object objdes obj (update-object objdes2 obj2 compst))
(update-object objdes2 obj2 (update-object objdes obj compst))))
:enable (update-object
object-disjointp
objdesign->base-address))
(defruled update-object-of-update-object-less-ident
(implies
(and (syntaxp (and (ffn-symb-p objdes 'value-pointer->designator)
(ffn-symb-p objdes2 'value-pointer->designator)
(b* ((ptr (fargn objdes 1))
(ptr2 (fargn objdes2 1)))
(and (ffn-symb-p ptr 'read-var)
(ffn-symb-p ptr2 'read-var)
(<< (fargn ptr2 1)
(fargn ptr 1))))))
(object-disjointp objdes objdes2))
(equal (update-object objdes obj (update-object objdes2 obj2 compst))
(update-object objdes2 obj2 (update-object objdes obj compst))))
:enable (update-object
object-disjointp
objdesign->base-address))
(defruled update-object-of-read-object-same
(implies (and (syntaxp (symbolp compst))
(compustatep compst1)
(equal (objdesign-kind objdes) :address)
(valuep (read-object objdes compst))
(equal (read-object objdes compst)
(read-object objdes compst1)))
(equal (update-object objdes (read-object objdes compst) compst1)
compst1))
:enable (read-object
update-object
objdesign->base-address
omap::update-of-cdr-of-in-when-in)
:prep-lemmas
((defruled omap::update-of-cdr-of-in-when-in
(implies (consp (omap::in k m))
(equal (omap::update k (cdr (omap::in k m)) m)
m))
:induct (omap::in k m)
:enable omap::in)))
(defval *atc-update-object-rules*
'(update-object-of-add-frame
update-object-of-enter-scope
update-object-of-add-var
update-object-of-update-var
update-object-of-update-object-same
update-object-of-update-object-less-symbol
update-object-of-update-object-less-ident
update-object-of-read-object-same
object-disjointp-commutative)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defsection atc-compustate-frames-number-rules
:short "Rules about @(tsee compustate-frames-number)."
:long
(xdoc::topstring
(xdoc::p
"The first four theorems about @(tsee compustate-frames-number)
serve to discharge the hypotheses about it being not 0
in some of the other theorems.
These are all immediately discharged,
because the functions used to represent the symbolic execution states
satisfy that condition
(by design, for @(tsee add-var) and @(tsee update-var)).")
(xdoc::p
"The last theorems serve to skip over @(tsee update-object) calls."))
(defruled compustate-frames-number-of-add-frame-not-zero
(not (equal (compustate-frames-number (add-frame fun compst)) 0))
:enable add-frame)
(defruled compustate-frames-number-of-enter-scope-not-zero
(not (equal (compustate-frames-number (enter-scope compst)) 0))
:enable enter-scope)
(defruled compustate-frames-number-of-add-var-not-zero
(not (equal (compustate-frames-number (add-var var val compst)) 0))
:enable add-var)
(defruled compustate-frames-number-of-update-var-not-zero
(not (equal (compustate-frames-number (update-var var val compst)) 0))
:enable update-var)
(defruled compustate-frames-number-of-update-object
(equal (compustate-frames-number (update-object objdes obj compst))
(compustate-frames-number compst))
:enable (update-object
compustate-frames-number))
(defval *atc-compustate-frames-number-rules*
'(compustate-frames-number-of-add-frame-not-zero
compustate-frames-number-of-enter-scope-not-zero
compustate-frames-number-of-add-var-not-zero
compustate-frames-number-of-update-var-not-zero
compustate-frames-number-of-update-object)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defval *atc-symbolic-computation-state-rules*
:short "List of rules for symbolic computation states."
(append *atc-push-frame-rules*
*atc-pop-frame-rules*
*atc-exit-scope-rules*
*atc-create-var-rules*
*atc-write-var-rules*
*atc-read-var-rules*
*atc-update-var-rules*
*atc-write-object-rules*
*atc-read-object-rules*
*atc-update-object-rules*
*atc-compustate-frames-number-rules*))
|