1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
; (value :q)
; (ccl::gc-verbose nil nil)
; (lp)
; (include-book "tmi-reductions")
; (time$ (with-output :off :all (certify-book "implementation" 1)))
; Timings on Whitehart:
; Mon Jul 16 09:26:20 2012
; 86.29 seconds realtime, 77.47 seconds runtime
(in-package "M1")
(include-book "defsys")
(defthm nst-out-bound
(implies (natp w)
(< (nst-out cell w) (expt 2 w)))
:hints (("Goal" :in-theory (enable nst-out)))
:rule-classes :linear)
(defthm current-symn-bound
(< (current-symn tape pos) 2)
:hints (("Goal" :in-theory (enable current-symn)))
:rule-classes :linear)
(defun ninstr1 (st sym tm w nnil)
(if (natp w)
(if (zp tm)
-1
(if (equal tm nnil)
-1
(let ((cell (ncar tm w)))
(if (and (equal st (nst-in cell w))
(equal sym (nsym cell w)))
cell
(ninstr1 st sym (ncdr tm w) w nnil)))))
-1))
(defthm ninstr1-nnil-is-ninstr
(equal (ninstr1 st sym tm w (nnil w))
(ninstr st sym tm w))
:hints (("Goal" :in-theory (enable ninstr))))
(in-theory (enable nst-in nsym nop nst-out ncar ncdr current-symn new-tape2))
(defsys :ld-flg nil
:modules
((lessp :formals (x y)
:input (and (natp x)
(natp y))
:output (if (< x y) 1 0)
:code (ifeq y
0
(ifeq x
1
(lessp (- x 1) (- y 1)))))
(mod :formals (x y)
:input (and (natp x)
(natp y)
(not (equal y 0)))
:output (mod x y)
:code (ifeq (lessp x y)
(mod (- x y) y)
x))
(floor :formals (x y a)
:input (and (natp x)
(natp y)
(not (equal y 0))
(natp a))
:output (+ a (floor x y))
:code (ifeq (lessp x y)
(floor (- x y) y (+ a 1))
a))
(log2 :formals (x a)
:input (and (natp x)
(natp a))
:output (+ a (log2 x))
:code (ifeq x
a
(ifeq (- x 1)
a
(log2 (floor x 2 0) (+ 1 a)))))
(expt :formals (x n a)
:input (and (natp x)
(natp n)
(natp a))
:output (* a (expt x n))
:code (ifeq n
a
(expt x (- n 1) (* x a))))
(nst-in :formals (cell w)
:input (and (natp cell)
(natp w))
:output (nst-in cell w)
:code (mod cell (expt 2 w 1)))
(nsym :formals (cell w)
:input (and (natp cell) (natp w))
:output (nsym cell w)
:code (mod (floor cell (expt 2 w 1) 0) 2))
(nop :formals (cell w)
:input (and (natp cell) (natp w))
:output (nop cell w)
:code (mod (floor cell (expt 2 (+ 1 w) 1) 0)
8))
(nst-out :formals (cell w)
:input (and (natp cell) (natp w))
:output (nst-out cell w)
:code (mod (floor cell (expt 2 (+ 4 w) 1) 0)
(expt 2 w 1)))
(ncar :formals (tm w)
:input (and (natp tm) (natp w))
:output (ncar tm w)
:code (mod tm (expt 2 (+ 4 (* 2 w)) 1)))
(ncdr :formals (tm w)
:input (and (natp tm) (natp w))
:output (ncdr tm w)
:code (floor tm (expt 2 (+ 4 (* 2 w)) 1) 0))
(current-symn :formals (tape pos)
:input (and (natp tape)
(natp pos))
:output (current-symn tape pos)
:code (ifeq (- pos (log2 tape 0))
0
(mod (floor tape (expt 2 pos 1) 0)
2)))
(ninstr1 :formals (st sym tm w nnil)
:input (and (natp st)
(natp sym)
(natp tm)
(natp w)
(equal nnil (nnil w)))
:output (ninstr1 st sym tm w nnil)
:code
(ifeq tm
-1
(ifeq (- tm nnil)
-1
(ifeq (ifeq (- st (nst-in (ncar tm w) w))
(- sym (nsym (ncar tm w) w))
1)
(ncar tm w)
(ninstr1 st sym (ncdr tm w) w nnil)))))
(new-tape2 :formals (op tape pos)
:input (and (natp op)
(natp tape)
(natp pos))
:output (mv (acl2::mv-nth 0 (new-tape2 op tape pos))
(acl2::mv-nth 1 (new-tape2 op tape pos)))
:code
(ifeq (ifeq op
0
(ifeq (- op 1)
0
1))
(ifeq (- pos (log2 tape 0))
(ifeq op
(mv (+ tape (expt 2 pos 1)) pos)
(mv (+ tape (expt 2 (+ pos 1) 1)) pos))
(ifeq (- (current-symn tape pos) op)
(mv tape pos)
(ifeq (current-symn tape pos)
(mv (+ tape (expt 2 pos 1)) pos)
(mv (- tape (expt 2 pos 1)) pos))))
(ifeq (- op 2)
(ifeq pos
(mv (* 2 tape) 0)
(mv tape (- pos 1)))
(ifeq (- pos (log2 tape 0))
(mv (+ (- tape (expt 2 pos 1))
(expt 2 (+ 1 pos) 1))
(+ 1 pos))
(mv tape (+ pos 1)))))
:ghost-base-value (mv tape pos))
(tmi3 :formals (st tape pos tm w nnil)
:dcls ((declare (xargs :measure (acl2-count n))))
:input (and (natp st)
(natp tape)
(natp pos)
(natp tm)
(natp w)
(equal nnil (nnil w))
(< st (expt 2 w)))
:output (tmi3 st tape pos tm w n) ; the logic's tmi3 doesn't take nnil as an arg.
:output-arity 4
:code
(ifeq (- (ninstr1 st (current-symn tape pos) tm w nnil) -1)
(mv 1 st tape pos)
(tmi3 (nst-out (ninstr1 st (current-symn tape pos) tm w nnil)
w)
(new-tape2 (nop (ninstr1 st (current-symn tape pos) tm w nnil)
w)
tape pos)
tm w nnil))
:ghost-formals (n)
:ghost-base-test (zp n)
:ghost-base-value (mv 0 st tape pos)
:ghost-decr ((- n 1)))
(main :formals (st tape pos tm w nnil)
:input (and (natp st)
(natp tape)
(natp pos)
(natp tm)
(natp w)
(equal nnil (nnil w))
(< st (expt 2 w)))
:output (tmi3 st tape pos tm w n)
:output-arity 4
:code (tmi3 st tape pos tm w nnil)
:ghost-formals (n)
:ghost-base-value (mv 0 st tape pos)))
:edit-commands
((defun !ninstr1
:before
((defthm natp-ncar
(implies (natp tm)
(natp (ncar tm w)))
:rule-classes :type-prescription)
(defthm natp-ncdr-x
(implies (natp tm)
(natp (ncdr tm w)))
:rule-classes :type-prescription)
(in-theory (disable ncar ncdr))
(defthm natp-nst-in
(implies (natp cell)
(natp (nst-in cell w)))
:rule-classes :type-prescription)
; The type-prescriptions for nsym, nop, and nst-out specify NATP.
(in-theory (disable nst-in nsym nop nst-out))
; The type-prescription for current-symn specifies NATP.
(in-theory (disable current-symn))
))
(defun !tmi3
:before
((defthm integerp-ninstr1
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w)
(equal nnil (nnil w)))
(and (integerp (ninstr1 st sym tm w nnil))
(<= -1 (ninstr1 st sym tm w nnil))))
:rule-classes
((:type-prescription
:corollary
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w)
(equal nnil (nnil w)))
(integerp (ninstr1 st sym tm w nnil))))
(:linear
:corollary
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w)
(equal nnil (nnil w)))
(<= -1 (ninstr1 st sym tm w nnil))))
(:rewrite
:corollary
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w)
(equal nnil (nnil w))
(not (equal (ninstr1 st sym tm w nnil) -1)))
(and (integerp (ninstr1 st sym tm w nnil))
(<= 0 (ninstr1 st sym tm w nnil)))))))
(defthm integerp-ninstr
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w))
(and (integerp (ninstr st sym tm w))
(<= -1 (ninstr st sym tm w))))
:rule-classes
((:type-prescription
:corollary
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w))
(integerp (ninstr st sym tm w))))
(:linear
:corollary
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w))
(<= -1 (ninstr st sym tm w))))
(:rewrite
:corollary
(implies (and (natp st)
(natp sym)
(natp tm)
(natp w)
(not (equal (ninstr st sym tm w) -1)))
(and (integerp (ninstr st sym tm w))
(<= 0 (ninstr st sym tm w)))))))
(defthm natp-mv-nth-0-new-tape2
(implies (and (natp tape)
(natp pos))
(natp (acl2::mv-nth 0 (new-tape2 op tape pos))))
:hints (("Goal" :nonlinearp t :in-theory (enable current-symn)))
:rule-classes :type-prescription)
(defthm natp-mv-nth-1-new-tape2
(implies (and (natp tape)
(natp pos))
(natp (acl2::mv-nth 1 (new-tape2 op tape pos))))
:hints (("Goal" :nonlinearp t :in-theory (enable current-symn)))
:rule-classes :type-prescription)
(in-theory (disable ncar ncdr ninstr1 new-tape2 current-symn
!ncar !ncdr !ninstr1 !new-tape2 !current-symn
nst-in nst-out nop nsym
!nst-in !nst-out !nop !nsym))))
(defthm !tmi3-spec
:hints
(("Subgoal *1/10'" :expand (!TMI3 ST TAPE POS TM W (NNIL W) N))))))
|