1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
; Correctness of Sign
; Problem: Define an M1 program to determine the sign of an integer n. You may
; assume that n is an integer. To indicate that n is negative, leave -1 on the
; stack; to indicate that n is zero, leave 0 on the stack; to indicate that n
; is positive, leave +1 on the stack. Prove that your program is correct.
; Design Plan: Since M1 can only test against 0, I have to terminate my program
; by reaching 0. I could do that by counting a positive n down or by counting
; a negative n up. But I don't know whether n is positive or negative. So
; I'll start with n and -n, one of which will be positive, and count both down
; by 1. One will reach 0 and the other will start negative and just stay
; negative. I'll know the sign of the original n by seeing which reaches 0.
; (0) Start ACL2
; (include-book "m1")
(in-package "M1")
; (1) Write your specification, i.e., define the expected inputs and the
; desired output, theta.
(defun ok-inputs (n)
(integerp n))
(defun theta (n)
(if (< n 0)
-1
(if (equal n 0)
0
+1)))
; (2) Write your algorithm. This will consist of a tail-recursive helper
; function and a wrapper, fn.
(defun helper (n m)
(declare (xargs :measure (+ (nfix m) (nfix n))))
(if (and (integerp n)
(integerp m)
(or (natp n)
(natp m)))
(if (equal n 0)
(if (equal m 0)
0
+1)
(if (equal m 0)
-1
(helper (- n 1) (- m 1))))
'illegal))
(defun fn (n) (helper n (* -1 n)))
; (3) Prove that the algorithm satisfies the spec, by proving first that the
; helper is appropriately related to theta and then that fn is theta on ok
; inputs.
; Important Note: When you verify your helper function, you must consider the
; most general case. For example, if helper is defined with formal parameters
; n and m and fn calls helper initializing m to -n, your helper theorem must
; be about (helper n m), not just about the special case (helper n (- n)).
(defthm helper-is-theta
(implies (and (integerp n)
(integerp m)
(or (natp n) (natp m)))
(equal (helper n m)
(if (and (natp n) (natp m))
(if (< n m)
+1
(if (equal n m)
0
-1))
(if (natp n)
+1
-1)))))
(defthm fn-is-theta
(implies (ok-inputs n)
(equal (fn n)
(theta n))))
; Disable these two lemmas because they confuse the theorem prover when it is
; dealing with the code versus fn.
(in-theory (disable helper-is-theta fn-is-theta))
; (4) Write your M1 program with the intention of implementing your algorithm.
(defconst *pi*
'((ILOAD 0) ; 0
(ICONST -1) ; 1
(IMUL) ; 2
(ISTORE 1) ; 3 n = -m;
(ILOAD 0) ; 4
(IFEQ 12) ; 5 if m=0, goto 17
(ILOAD 1) ; 6
(IFEQ 16) ; 7 if n=0, goto 23
(ILOAD 0) ; 8
(ICONST 1) ; 9
(ISUB) ; 10
(ISTORE 0) ; 11 m = m-1;
(ILOAD 1) ; 12
(ICONST 1) ; 13
(ISUB) ; 14
(ISTORE 1) ; 15 n = n-1;
(GOTO -12) ; 16 goto 4
(ILOAD 1) ; 17
(IFEQ 3) ; 18 if n=0, goto 21
(ICONST 1) ; 19 answer: positive
(GOTO 4) ; 20 goto 24
(ICONST 0) ; 21 answer: zero
(GOTO 2) ; 22 goto 24
(ICONST -1) ; 23 answer: negative
(HALT)) ; 24 halt
)
; (5) Define the ACL2 function that clocks your program, starting with the
; loop clock and then using it to clock the whole program. The clock
; should take the program from pc 0 to a HALT statement. (Sometimes your
; clocks will require multiple inputs or other locals, but our example only
; requires the first local.)
(defun loop-clk (n m)
(declare (xargs :measure (+ (nfix n) (nfix m))))
(cond ((and (integerp n)
(integerp m)
(or (natp n)
(natp m)))
(cond ((equal n 0)
6)
((equal m 0)
5)
(t (clk+ 13
(loop-clk (- n 1) (- m 1))))))
(t nil)))
(defun clk (n)
(clk+ 4
(loop-clk n (- n))))
; (6) Prove that the code implements your algorithm, starting with the lemma
; that the loop implements the helper. Each time you prove a lemma relating
; code to algorithm, disable the corresponding clock function so the theorem
; prover doesn't look any deeper into subsequent code.
; Important Note: Your lemma about the loop must consider the general case.
; For example, if the loop uses the locals n and m, you must characterize its
; behavior for arbitrary, legal n and m, not just a special case (e.g., where n
; is (- n)).
(defthm loop-is-helper
(implies (and (integerp n)
(integerp m)
(or (natp n) (natp m)))
(equal (m1 (make-state 4
(list n m)
nil
*pi*)
(loop-clk n m))
(make-state 24
(cond
((and (natp n) (natp m))
(if (< n m)
(list 0 (- m n))
(list (- n m) 0)))
((natp n)
(list 0 (- m n)))
(t (list (- n m) 0)))
(push (helper n m) nil)
*pi*))))
(in-theory (disable loop-clk))
(defthm program-is-fn
(implies (ok-inputs n)
(equal (m1 (make-state 0
(list n)
nil
*pi*)
(clk n))
(make-state 24
(if (natp n)
(list 0 (* -2 n))
(list (* 2 n) 0))
(push (fn n) nil)
*pi*))))
(in-theory (disable clk))
; (7) Put the two steps together to get correctness.
(in-theory (enable fn-is-theta))
(defthm program-correct
(implies (ok-inputs n)
(equal (m1 (make-state 0
(list n)
nil
*pi*)
(clk n))
(make-state 24
(if (natp n)
(list 0 (* -2 n))
(list (* 2 n) 0))
(push (theta n)
nil)
*pi*))))
; This corollary just shows we did what we set out to do:
(defthm total-correctness
(implies (and (integerp n)
(equal sf (m1 (make-state 0
(list n)
nil
*pi*)
(clk n))))
(and (equal (next-inst sf) '(HALT))
(equal (top (stack sf))
(if (< n 0)
-1
(if (equal n 0)
0
+1)))))
:rule-classes nil)
; Think of the above theorem as saying: for all integers n, there exists a
; clock (for example, the one constructed by (clk n)) such that running
; *pi* with (list n) as input produces a state, sf, that is halted and which
; contains -1, 0, or +1 on top of the stack depending on whether x is negative,
; 0, or positive. Note that the algorithm used by *pi* is not specified or
; derivable from this formula.
|