1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
|
; This file tells the whole m1 story from scratch in a minimalist
; setting. Then, that story is redeveloped in the books
; m1.lisp
; m1-lemmas.lisp
; m1-compiler.lisp
; m1-ifact.lisp
#|
(include-book "problem-set-1-answers")
(begin-book t :ttags :all)
|#
(in-package "M1")
; Here is the semantics of the M1 machine. In addition to the ACL2 primitive
; functions in the "M1" package, we take advantage of the following
; functions defined in "problem-set-1-answers.lisp":
; push, top, pop, - intro material of Problem Set 1
; nth - intro material of Problem Set 1
; update-nth - Problem 1-14
; make-state, pc, etc - intro material of Problem Set 1
; opcode, arg1, arg2 - Problem 1-4
(defun next-inst (s)
(nth (pc s) (program s)))
; Now we define the semantics of each instruction. These
; functions are called ``semantic functions.''
(defun execute-ICONST (inst s)
(make-state (+ 1 (pc s))
(locals s)
(push (arg1 inst) (stack s))
(program s)))
(defun execute-ILOAD (inst s)
(make-state (+ 1 (pc s))
(locals s)
(push (nth (arg1 inst)
(locals s))
(stack s))
(program s)))
(defun execute-IADD (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))
(locals s)
(push (+ (top (pop (stack s)))
(top (stack s)))
(pop (pop (stack s))))
(program s)))
(defun execute-ISTORE (inst s)
(make-state (+ 1 (pc s))
(update-nth (arg1 inst) (top (stack s)) (locals s))
(pop (stack s))
(program s)))
(defun execute-ISUB (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))
(locals s)
(push (- (top (pop (stack s)))
(top (stack s)))
(pop (pop (stack s))))
(program s)))
(defun execute-IMUL (inst s)
(declare (ignore inst))
(make-state (+ 1 (pc s))
(locals s)
(push (* (top (pop (stack s)))
(top (stack s)))
(pop (pop (stack s))))
(program s)))
(defun execute-GOTO (inst s)
(make-state (+ (arg1 inst) (pc s))
(locals s)
(stack s)
(program s)))
(defun execute-IFLE (inst s)
(make-state (if (<= (top (stack s)) 0)
(+ (arg1 inst) (pc s))
(+ 1 (pc s)))
(locals s)
(pop (stack s))
(program s)))
(defun do-inst (inst s)
(if (equal (op-code inst) 'ICONST)
(execute-ICONST inst s)
(if (equal (op-code inst) 'ILOAD)
(execute-ILOAD inst s)
(if (equal (op-code inst) 'ISTORE)
(execute-ISTORE inst s)
(if (equal (op-code inst) 'IADD)
(execute-IADD inst s)
(if (equal (op-code inst) 'ISUB)
(execute-ISUB inst s)
(if (equal (op-code inst) 'IMUL)
(execute-IMUL inst s)
(if (equal (op-code inst) 'GOTO)
(execute-GOTO inst s)
(if (equal (op-code inst) 'IFLE)
(execute-IFLE inst s)
s)))))))))
(defun step (s)
(do-inst (next-inst s) s))
(defun run (sched s)
(if (endp sched)
s
(run (cdr sched) (step s))))
; ===========================================================================
; Now I present an example of an M1 program and its execution.
(defconst *ifact-program*
; Imagine compiling:
; a = 1;
; while (n > 0)
; { a = n * a;
; n = n-1;};
; return a;
'((ICONST 1) ;;; 0
(ISTORE 1) ;;; 1 a = 1;
(ILOAD 0) ;;; 2 while ; loop: pc=2
(IFLE 10) ;;; 3 (n > 0)
(ILOAD 0) ;;; 4 {
(ILOAD 1) ;;; 5
(IMUL) ;;; 6
(ISTORE 1) ;;; 7 a = n * a;
(ILOAD 0) ;;; 8
(ICONST 1) ;;; 9
(ISUB) ;;; 10
(ISTORE 0) ;;; 11 n = n-1;
(GOTO -10) ;;; 12 } ; jump to loop
(ILOAD 1) ;;; 13
(HALT) ;;; 14 return a;
))
; You can just evaluate this test and get the answer shown.
#|
(run
'(0 0 0 0 0 0 0 0 0 0 ; 100 clock ticks
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0)
(make-state
0 ; pc
'(5 0) ; locals: n=5, a=0
nil ; stack
*ifact-program* ; our program, above
))
; answer:
(14 ; final pc
(0 120) ; final locals: n=0, a=120
(120) ; final stack
((ICONST 1) ; our program, again
(ISTORE 1)
(ILOAD 0)
(IFLE 10)
(ILOAD 0)
(ILOAD 1)
(IMUL)
(ISTORE 1)
(ILOAD 0)
(ICONST 1)
(ISUB)
(ISTORE 0)
(GOTO -10)
(ILOAD 1)
(HALT)))
|#
; We can record this in a certified book as a theorem by just
; equating the expression and its computed value:
(defthm factorial-example-0
(equal (run
'(0 0 0 0 0 0 0 0 0 0 ; 100 clock ticks
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0)
(make-state
0 ; pc
'(5 0) ; locals: n=5, a=0
nil ; stack
*ifact-program* ; our program, above
))
'(14 ; final pc
(0 120) ; final locals: n=0, a=120
(120) ; final stack
((ICONST 1) ; our program, again
(ISTORE 1)
(ILOAD 0)
(IFLE 10)
(ILOAD 0)
(ILOAD 1)
(IMUL)
(ISTORE 1)
(ILOAD 0)
(ICONST 1)
(ISUB)
(ISTORE 0)
(GOTO -10)
(ILOAD 1)
(HALT))))
:rule-classes nil)
; ===========================================================================
; Now I make it easier to write schedules and write a schedule for ifact.
; Here we use
; app - Problem 1-10
; repeat - Problem 1-12
(defun ifact-loop-sched (n)
(if (zp n)
(repeat 0 4)
(app (repeat 0 11)
(ifact-loop-sched (- n 1)))))
; This can be explained: to schedule the ifact program on n starting
; at the loop pc = 2: If n is 0, schedule 4 steps, namely the
; instructions at pcs 2, 3, 13, and 14, ending at the HALT.
; Otherwise, if n is not 0, schedule the 11 instructions at pcs 2
; through 12, ending back at pc = 2, and then schedule ifact for n-1.
; We then use this to say how to schedule a complete ifact computation,
; starting at pc = 0.
(defun ifact-sched (n)
(app (repeat 0 2)
(ifact-loop-sched n)))
; ===========================================================================
; Now I write our example above in a slightly more precise and abstract
; way.
(defun ! (n)
(if (zp n)
1
(* n (! (- n 1)))))
; And here is a function that computes factorial by running M1:
(defun test-ifact (n)
(top
(stack
(run (ifact-sched n)
(make-state 0
(cons n (cons 0 nil))
nil
*ifact-program*)))))
(acl2::comp t) ; added by Matt K. for GCL
(defthm factorial-example-1
(equal (test-ifact 5)
(! 5))
:rule-classes nil)
(defthm factorial-example-2
(equal (test-ifact 1000)
(! 1000))
:rule-classes nil)
; ===========================================================================
; Problem 2a-1: Define the constant *even-program* as an M1 program that takes
; a natural number, i, as local variable 0 and halts with 1 on the stack if i
; is even and with 0 on the stack if i is odd. For example, if the program is
; started with locals (18) then it pushes 1, but if started with (19) it pushes
; 0.
; My Answer:
(defconst *even-program*
'((iload 0)
(ifle 12)
(iload 0)
(iconst 1)
(isub)
(ifle 6)
(iload 0)
(iconst 2)
(isub)
(istore 0)
(goto -10)
(iconst 0)
(halt)
(iconst 1)
(halt)))
(defun even-sched (i)
(if (zp i)
(repeat 0 4)
(if (equal i 1)
(repeat 0 8)
(app (repeat 0 11)
(even-sched (- i 2))))))
(defun test-even (i)
(top
(stack
(run (even-sched i)
(make-state 0
(list i)
nil
*even-program*)))))
(defthm test-even-theorem
(and (equal (test-even 18) 1)
(equal (test-even 19) 0)
(equal (test-even 235) 0)
(equal (test-even 234) 1))
:rule-classes nil)
; ===========================================================================
; Now I develop a compiler for a simple language of arithmetic,
; assignment, and while statements.
; Here we'll use
; member - Problem 1-15
; index - Problem 1-16
; len - Problem 1-9
; The syntax of our language is
; <expr> := <var>|<int-constant>|( <expr> <op> <expr> )
; <op> := + | - | *
; <test> := ( <expr> > <expr>)
; <stmt> := ( <var> = <expr> ) |
; ( while <test> <stmt*>) |
; ( return <expr> )
; <stmt*> := <stmt> | <stmt> <stmt*>
; <program> := ( <stmt*> )
; <var> := any ACL2 symbol
; <int-constant> := any ACL2 integer
; Thus, an example program is:
; ((a = 1)
; (while (n > 0)
; (a = (n * a))
; (n = (n - 1)))
; (return a))
; For the purposes of this exercise, we will assume that every
; program we wish to compile is syntactically well-formed.
; We first define a function, collect-vars-in-stmt*, that sweeps over
; a list of statements and collects all the variables it finds. It
; adds the variables to the end of a running accumulator. That
; accumulator will be initiallized to the list of formals of the
; method we're compiling. The new variables accumulated onto it will
; be the temporary variables of the method. The order of the
; collected list will determine where the variables are allocated in
; the locals. The first formal will be given index 0, the next index
; 1, etc.
(defun collect-at-end (list e) ;;; Add e to the end of list
(if (member e list) ;;; unless it is already in list.
list
(app list (cons e nil))))
; These two theorems are necessary for the proof of termination of
; collect-vars-in-expr, below.
(defthm nth-nil
(equal (nth n nil) nil))
(defthm acl2-count-nth
(implies (consp list)
(< (acl2-count (nth n list))
(acl2-count list)))
:rule-classes :linear)
(defun collect-vars-in-expr (vars expr) ;;; Sweep expr and collect
(if (atom expr) ;;; all variable names into
(if (symbolp expr) ;;; vars.
(collect-at-end vars expr)
vars)
(collect-vars-in-expr
(collect-vars-in-expr vars
(nth 0 expr))
(nth 2 expr))))
; Note that if expr is not an atom, it is of the form
; ( <expr> + <expr> ) or
; ( <expr> - <expr> ) or
; ( <expr> * <expr> ).
; Hence, (nth 0 expr) is the first subexpression and (nth 2 expr) is
; the second.
; Now we collect the vars in a statement. This is defined mutually
; recursively with the vars in a list of statements.
(mutual-recursion
(defun collect-vars-in-stmt* (vars stmt-list)
(if (endp stmt-list)
vars
(collect-vars-in-stmt*
(collect-vars-in-stmt vars (car stmt-list))
(cdr stmt-list))))
(defun collect-vars-in-stmt (vars stmt)
(if (equal (nth 1 stmt) '=)
(collect-vars-in-expr
(collect-at-end vars (nth 0 stmt))
(nth 2 stmt))
(if (equal (nth 0 stmt) 'WHILE)
(collect-vars-in-stmt*
(collect-vars-in-expr vars (nth 1 stmt))
(cdr (cdr stmt)))
(if (equal (nth 0 stmt) 'RETURN)
(collect-vars-in-expr vars (nth 1 stmt))
vars))))
)
; We will use the function index to determine the position of a
; variable in the list of variables.
; Now we begin the code generation. To compile an expression
; like (<expr> op <expr>), we'll generate code that leaves the
; values of the two subexpressions on the stack and then we'll
; execute the bytecode that pops those two values and pushes the
; result of executing op.
; The bytecode program to execute op (assuming its arguments are
; on the stack):
(defun OP! (op)
(if (equal op '+)
'((IADD))
(if (equal op '-)
'((ISUB))
(if (equal op '*)
'((IMUL))
'((ILLEGAL))))))
; Note that the output above is a bytecode program, i.e., a list of
; instructions (in this case, always a trivial list of length 1). All
; our functions for generating code generate bytecode programs so we
; can combine them with concatentation.
; The bytecode program to put the value of a variable on the stack:
(defun ILOAD! (vars var)
(cons (cons 'ILOAD (cons (index var vars) nil))
nil))
; The bytecode program to put the value of a constant on the stack:
(defun ICONST! (n)
(cons (cons 'ICONST (cons n nil))
nil))
; The bytecode program to put the value of an expression on the stack:
(defun expr! (vars expr)
(if (atom expr)
(if (symbolp expr)
(ILOAD! vars expr)
(ICONST! expr))
(app (expr! vars (nth 0 expr))
(app (expr! vars (nth 2 expr))
(OP! (nth 1 expr))))))
; The bytecode program to test the top of the stack and branch by offset
; if it is less than or equal to 0:
(defun IFLE! (offset)
(cons (cons 'IFLE (cons offset nil))
nil))
; The bytecode program to jump by offset:
(defun GOTO! (offset)
(cons (cons 'GOTO (cons offset nil))
nil))
; The bytecode program to evaluate a while statement (given the
; bytecode programs for the test and body):
(defun while! (test-code body-code)
; To compile (while test stmt1...stmtn) we first compile code that
; leaves a positive on the stack if test is true and a non-positive on
; the stack if test is false. Call that code test1, ... testk. Then
; we compile the statements in the body. Call that code body1, ...,
; bodyn. Note that the length of the test code is k and the length of
; the body code is n. We return:
; (test1 ; top of WHILE
; ...
; testk ; value of test is on the stack
; (IFLE 2+n) ; if test false, jump past body code
; body1
; ...
; bodyn
; (GOTO -(n+1+k)) ; go back to top of WHILE
; ) ; we're done with the WHILE
(app test-code
(app (IFLE! (+ 2 (len body-code)))
(app body-code
(GOTO! (- (+ (len test-code)
1
(len body-code))))))))
; The bytecode program to leave a positive on the stack if test is
; true and a non-positive otherwise:
(defun test! (vars test)
; Test has to be of the form (x > y), where x and y are expressions.
; If y is 0, then we can just leave the value of x on the stack, that
; is, the test is true or false exactly according to whether the value
; of x is positive or not positive. If y is not 0, we act like we saw
; (x-y > 0), which is equivalent and which statisfies the first
; condition.
(if (equal (nth 1 test) '>)
(if (equal (nth 2 test) 0)
(expr! vars (nth 0 test))
(app (expr! vars (nth 0 test))
(app (expr! vars (nth 2 test))
'((ISUB)))))
'((ILLEGAL))))
; The bytecode program to pop the stack into the local allocated for var:
(defun ISTORE! (vars var)
(cons (cons 'ISTORE (cons (index var vars) nil))
nil))
; The bytecode programs for a list of statements and for a single statement:
(mutual-recursion
(defun stmt*! (vars stmt-list)
(if (endp stmt-list)
nil
(app (stmt! vars (car stmt-list))
(stmt*! vars (cdr stmt-list)))))
(defun stmt! (vars stmt)
(if (equal (nth 1 stmt) '=)
(app (expr! vars (nth 2 stmt))
(ISTORE! vars (nth 0 stmt)))
(if (equal (nth 0 stmt) 'WHILE)
(while!
(test! vars (nth 1 stmt))
(stmt*! vars (cdr (cdr stmt))))
(if (equal (nth 0 stmt) 'RETURN)
(app (expr! vars (nth 1 stmt))
'((HALT)))
'((ILLEGAL))))))
)
; The bytecode program for stmt-list given the initial formals:
(defun compile (formals stmt-list)
(stmt*! (collect-vars-in-stmt* formals stmt-list)
stmt-list))
; See Demo1.java
(defthm example-compilation-1
(equal (compile '(n)
'((a = 1)
(while (n > 0)
(a = (n * a))
(n = (n - 1)))
(return a)))
'((ICONST 1)
(ISTORE 1)
(ILOAD 0)
(IFLE 10)
(ILOAD 0)
(ILOAD 1)
(IMUL)
(ISTORE 1)
(ILOAD 0)
(ICONST 1)
(ISUB)
(ISTORE 0)
(GOTO -10)
(ILOAD 1)
(HALT)))
:rule-classes nil)
; See Demo2.java
(defthm example-compilation-2
(equal (compile '(n k)
'((a = 0)
(while (n > k)
(a = (a + 1))
(n = (n - 1)))
(return a)))
'((ICONST 0)
(ISTORE 2)
(ILOAD 0)
(ILOAD 1)
(ISUB)
(IFLE 10)
(ILOAD 2)
(ICONST 1)
(IADD)
(ISTORE 2)
(ILOAD 0)
(ICONST 1)
(ISUB)
(ISTORE 0)
(GOTO -12)
(ILOAD 2)
(HALT)))
:rule-classes nil)
(defthm example-execution-1
(equal (top
(stack
(run (repeat 0 1000)
(make-state 0
'(5 0)
nil
(compile '(n)
'((a = 1)
(while (n > 0)
(a = (n * a))
(n = (n - 1)))
(return a)))))))
120)
:rule-classes nil)
(defthm example-execution-2
(equal (top
(stack
(run (repeat 0 1000)
(make-state 0
'(10 4 0)
nil
(compile '(n k)
'((a = 0)
(while (n > k)
(a = (a + 1))
(n = (n - 1)))
(return a)))))))
6)
:rule-classes nil)
; ===========================================================================
; Now I develop some rules that allow ACL2 to prove theorems
; about M1 programs.
; Arithmetic
(include-book "arithmetic-3/extra/top-ext" :dir :system)
; Abstract Data Type Stuff
(defthm stacks
(and (equal (top (push x s)) x)
(equal (pop (push x s)) s)
; These next two are needed because some push expressions evaluate to
; list constants, e.g., (push 1 (push 2 nil)) becomes '(1 2) and '(1
; 2) pattern-matches with (cons x s) but not with (push x s).
(equal (top (cons x s)) x)
(equal (pop (cons x s)) s)))
(in-theory (disable push top pop))
(defthm states
(and (equal (pc (make-state pc locals stack program)) pc)
(equal (locals (make-state pc locals stack program)) locals)
(equal (stack (make-state pc locals stack program)) stack)
(equal (program (make-state pc locals stack program)) program)
; And we add the rules to handle constant states:
(equal (pc (cons pc x)) pc)
(equal (locals (cons pc (cons locals x))) locals)
(equal (stack (cons pc (cons locals (cons stack x)))) stack)
(equal (program (cons pc (cons locals (cons stack (cons program x)))))
program)))
(in-theory (disable make-state pc locals stack program))
; Step Stuff
(defthm step-opener
(implies (consp (next-inst s))
(equal (step s)
(do-inst (next-inst s) s))))
(in-theory (disable step))
; Schedules and Run
(defthm run-app
(equal (run (app a b) s)
(run b (run a s))))
(defthm run-opener
(and (equal (run nil s) s)
(equal (run (cons th sched) s)
(run sched (step s)))))
(in-theory (disable run))
; Nth and update-nth
(defthm nth-add1!
(implies (natp n)
(equal (nth (+ 1 n) list)
(nth n (cdr list)))))
(defthm nth-update-nth
(implies (and (natp i) (natp j))
(equal (nth i (update-nth j v list))
(if (equal i j)
v
(nth i list)))))
(defthm update-nth-update-nth-1
(implies (and (natp i) (natp j) (not (equal i j)))
(equal (update-nth i v (update-nth j w list))
(update-nth j w (update-nth i v list))))
:rule-classes ((:rewrite :loop-stopper ((i j update-nth)))))
(defthm update-nth-update-nth-2
(equal (update-nth i v (update-nth i w list))
(update-nth i v list)))
; ===========================================================================
; Proof that the factorial code computes factorial. I lay this out as
; a series of 7 steps. The steps are:
; [1] Specify the concepts related to what you're doing.
; [2] Write the program.
; [3] Specify how long it takes to execute (starting with the
; loop). In particular, define a scheduler function that
; will run this program to completion.
; [4] Test the program and your scheduler.
; [5] Prove your program does what it does, starting with the
; loop.
; [6] Prove what we do is what we want.
; [7] Put it all together.
; Concretely, for the factorial code, here are the steps.
; [1] Specify the concepts related to what you're doing.
; Typically we do it at two levels,
; (a) What we want.
; (b) How we'll do it.
; (a) What we want:
(defun ! (n)
(if (zp n)
1
(* n (! (- n 1)))))
; (b) How we'll do it: We'll compute (ifact n 1), where
(defun ifact (n a)
(if (zp n)
a
(ifact (- n 1) (* n a))))
; [2] Write the program.
; Below I show the bytecode program. It is the one generated by
; our compiler. But I will deal with the bytecode directly, not
; the source code.
(defconst *ifact-program*
; (compile-stmt-list
; '(n)
; '((a = 1)
; (while (n > 0)
; (a = (n * a))
; (n = (n - 1)))
; (return a)))
'((ICONST 1) ;;; 0
(ISTORE 1) ;;; 1 (a = 1)
(ILOAD 0) ;;; 2 (while ; loop: pc=2
(IFLE 10) ;;; 3 (n > 0)
(ILOAD 0) ;;; 4
(ILOAD 1) ;;; 5
(IMUL) ;;; 6
(ISTORE 1) ;;; 7 (a = (n * a))
(ILOAD 0) ;;; 8
(ICONST 1) ;;; 9
(ISUB) ;;; 10
(ISTORE 0) ;;; 11 (n = (n - 1))
(GOTO -10) ;;; 12 ) ; jump to loop
(ILOAD 1) ;;; 13
(HALT) ;;; 14 (return a)
))
; [3] Specify how long it takes to execute (starting with the loop).
; In particular, define a scheduler function that will
; run this program to completion. We've already done this:
(defun ifact-loop-sched (n)
(if (zp n)
(repeat 0 4)
(app (repeat 0 11)
(ifact-loop-sched (- n 1)))))
(defun ifact-sched (n)
(app (repeat 0 2)
(ifact-loop-sched n)))
; [4] Test the program and your scheduler.
; We define a little ``test harness'' to let us compute ifact
; on any natural, using the ifact program.
(defun test-ifact (n)
(top
(stack
(run (ifact-sched n)
(make-state 0
(cons n (cons 0 nil)) ; n=n, a=0
nil
*ifact-program*)))))
; Normally we would just try out a few examples, e.g.,
; (test-ifact 5) and expect to see 120 or (! 5). But for
; posterity I will just write a trivial theorem to prove.
(defthm test-ifact-examples
(and (equal (test-ifact 5) (! 5))
(equal (test-ifact 10) (! 10))
(equal (test-ifact 100) (! 100))))
; Just for the record, (! 100) is quite large; it has 158 decimal
; digits. This shows that our little m1 machine inherents quite a lot
; of power from its Lisp description.
; [5] Prove your program does what it does, starting with the loop.
(defthm ifact-loop-lemma
(implies (and (natp n)
(natp a))
(equal (run (ifact-loop-sched n)
(make-state 2
(cons n (cons a nil))
stack
*ifact-program*))
(make-state 14
(cons 0 (cons (ifact n a) nil))
(push (ifact n a) stack)
*ifact-program*))))
(defthm ifact-lemma
(implies (natp n)
(equal (run (ifact-sched n)
(make-state 0
(cons n (cons a nil))
stack
*ifact-program*))
(make-state 14
(cons 0 (cons (ifact n 1) nil))
(push (ifact n 1) stack)
*ifact-program*))))
; We can now disable sched-ifact so that we never run the bytecode
; again in proofs.
(in-theory (disable ifact-sched))
; [6] Prove what we do is what we want.
(defthm ifact-is-factorial
(implies (and (natp n)
(natp a))
(equal (ifact n a)
(* (! n) a))))
; [7] Put it all together.
(defthm ifact-correct
(implies (natp n)
(equal (run (ifact-sched n)
(make-state 0
(cons n (cons a nil))
stack
*ifact-program*))
(make-state 14
(cons 0 (cons (! n) nil))
(push (! n) stack)
*ifact-program*))))
(defthm ifact-correct-corollary-1
(implies (natp n)
(equal (top
(stack
(run (ifact-sched n)
(make-state 0
(cons n (cons a nil))
stack
*ifact-program*))))
(! n))))
; We can make this look like the verification of a high-level program,
; but of course it is not. We verified the output of the compiler,
; not the input.
(defthm ifact-correct-corollary-2
(implies (natp n)
(equal (top
(stack
(run (ifact-sched n)
(make-state 0
(cons n (cons a nil))
stack
(compile
'(n)
'((a = 1)
(while (n > 0)
(a = (n * a))
(n = (n - 1)))
(return a)))))))
(! n))))
; ===========================================================================
; Now we develop the macros that make all this more palatable.
; The semantic functions for each instruction return a new state
; constructed from parts of an old one, s. Typically the new
; state is just s with one or two components changed. The others
; are fixed, for that instruction.
; A good example is that of ILOAD:
; (make-state (+ 1 (pc s))
; (locals s)
; (push (nth (arg1 inst)
; (locals s))
; (stack s))
; (program s))
; We can write a macro that allows us to express this as
;
; (modify s
; :stack (push (nth (arg1 inst)
; (locals s))
; (stack s)))
; The modify expression above expands EXACTLY to the make-state shown
; above it. Modify is just an abbreviation for a make-state. But we
; only have to write the parts that change in ``unusual'' ways. Since
; pc is almost always incremented by one, modify will always produce
; (+ 1 (pc s)) in the pc slot of the make-state, unless we supply the
; :pc keyword to modify along with the correct new pc.
; So here is the modify macro. It generates a make-state. The first
; slot is the pc slot, the second is the locals, etc. For each of the
; keys :pc, :locals, :stack, and :program, if that key is supplied
; among the args to modify, then the make-state has the corresponding
; val in that key's slot. Otherwise, that key's slot is occupied by
; an expression that computes the value of that slot in state s. The
; :pc slot is an exception: the default value is the old value
; incremented by one.
(defmacro modify (s &rest args)
(list 'make-state
(if (suppliedp :pc args)
(actual :pc args)
(list '+ 1 (list 'pc s)))
(if (suppliedp :locals args)
(actual :locals args)
(list 'locals s))
(if (suppliedp :stack args)
(actual :stack args)
(list 'stack s))
(if (suppliedp :program args)
(actual :program args)
(list 'program s))))
(defthm example-modify-1
(equal (modify s :stack (push (arg1 inst) (stack s)))
(make-state (+ 1 (pc s))
(locals s)
(push (arg1 inst) (stack s))
(program s)))
:rule-classes nil)
(defthm example-modify-2
(equal (modify s
:locals (update-nth (arg1 inst)
(top (stack s))
(locals s))
:stack (pop (stack s)))
(make-state
(+ 1 (pc s))
(update-nth (arg1 inst)
(top (stack s))
(locals s))
(pop (stack s))
(program s)))
:rule-classes nil)
(defthm example-modify-3
(equal (modify s :pc (+ (arg1 inst) (pc s)))
(make-state (+ (arg1 inst) (pc s))
(locals s)
(stack s)
(program s)))
:rule-classes nil)
; Because we frequently use such expressions as (arg2 inst) and (stack
; s) in the descriptions of new states, it is convenient to introduce
; some variables that are bound to those values whenever we are
; defining a semantic function. We therefore introduce a special form
; of defun to use when defining the semantics of an instruction.
(defun pattern-bindings (vars arg-expressions)
(if (endp vars)
nil
(cons (list (car vars) (car arg-expressions))
(pattern-bindings (cdr vars) (cdr arg-expressions)))))
(defmacro semantics (pattern body)
(list 'let (app (pattern-bindings (cdr pattern)
'((arg1 inst)
(arg2 inst)
(arg3 inst)))
'((-pc- (pc s))
(-locals- (locals s))
(-stack- (stack s))
(-program- (program s))))
body))
; The body might not refer to each of these bound variables.
; ACL2 normally causes an error if it sees an unused bound
; variable. We must tell it not to worry about that.
(acl2::set-ignore-ok t)
(defthm example-semantics-1
(equal (semantics
(ICONST c)
(modify s :stack (push c -stack-)))
(make-state
(+ 1 (pc s))
(locals s)
(push (arg1 inst) (stack s))
(program s)))
:rule-classes nil)
; So in the future, instead of writing
; (defun execute-ICONST (inst s)
; (make-state (+ 1 (pc s))
; (locals s)
; (push (arg1 inst) (stack s))
; (program s)))
; we could write
; (defun execute-ICONST (inst s)
; (semantics (ICONST c)
; (modify s :stack (push c -stack-))))
; But in fact, we'll introduce yet another macro so we can just write:
; (defsem (ICONST c)
; (modify s :stack (push c -stack-)))
; and it will
; * generate the name execute-ICONST,
; * fill in the formals, and
; * use the semantics function to generate the body.
; So now we define defsem...
; The next function is easily understood by example.
; (concat-symbols 'EXECUTE- 'ICONST) will return the
; symbol EXECUTE-ICONST.
; I have not told you how to create symbols because we don't need it -- except
; for this one use of going from an instruction opcode to the semantic function
; name. Just trust me that this function generates a symbol in the M1 package
; whose name is the concatenation of the names of the two parts.
(defun concat-symbols (part1 part2)
(intern-in-package-of-symbol
(coerce
(app (coerce (symbol-name part1) 'list)
(coerce (symbol-name part2) 'list))
'string)
'run))
; This function creates a defun form, with an optional declaration.
(defun make-defun (name args dcl body)
(if dcl
(list 'defun name args dcl body)
(list 'defun name args body)))
; Thus, (make-defun 'foo '(x) nil '(+ 1 x)) returns
; (defun foo (x) (+ 1 x))
; But, (make-defun 'foo '(x y) '(declare (ignore y)) '(+ 1 x))
; returns
; (defun foo (x y) (declare (ignore y)) (+ 1 x))
(defmacro defsem (pattern body)
(make-defun (concat-symbols 'execute- (car pattern))
'(inst s)
(if (equal (len pattern) 1)
'(declare (ignore inst))
nil)
(list 'semantics pattern body)))
|