1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
|
; Reduction of TMI to an Algorithm to be Implemented on M1
; J Strother Moore
; April 10, 2012
; (ld '((include-book "../m1/m1") . "tmi-reductions.lisp") :ld-pre-eval-print t)
; Certification instructions:
; cd /u/moore/courses/cs378/jvm/spring-12/equivalence/
; acl2h536t
; (include-book "../m1/m1-lemmas")
; (time$ (with-output :off :all (certify-book "tmi-reductions" 1)))
; Timing on Whitehart
; 190.28 seconds realtime, 184.22 seconds runtime
; Some comments below could be wrong... All of them need to be read carefully
; in light of what is now in the file.
; ---
; The proof is really messy toward the end. Start with theorem-b-raw and work
; forward. The hack lemmas and hints are depressing and probably fragile.
; Try to get rewrite rules to do the work.
; Notes: This file was tmi5.lisp before being completed. Here are my
; frequently used build commands.
; (ld "tmi5.lisp" :ld-pre-eval-print t)
; (acl2::with-output :off :all (ld "tmi5.lisp" :ld-pre-eval-print nil))
; See improved-assembler.lisp for some random thoughts followed by a suggestion
; for a better assembly langugage. If you implement it, redo all of the M1
; proofs!
; Some problems were discovered in the arithmetic library.
; Tell Robert that (set-default-arithmetic-theory) doesn't do the job advertised in
; the README. If you
; (include-book "arithmetic-5/top" :dir :system)
; (defun log2 (n)
; (cond ((zp n) 0)
; ((equal n 1) 0)
; (t (+ 1 (log2 (floor n 2))))))
; the defun of log2 works. But if you (set-default-arithmetic-theory) before the
; defun, it does not. I want to be able to switch back and forth between
; minimal-arithmetic-theory and the default and cannot.
; Tell Robert about not-equal-ncons-nnil below!
(in-package "M1")
;(set-gag-mode :goals)
(set-irrelevant-formals-ok t)
(set-ignore-ok :warn)
(defun rev (x)
(if (endp x)
nil
(append (rev (cdr x))
(list (car x)))))
(defun rev1 (x a)
(if (endp x)
a
(rev1 (cdr x) (cons (car x) a))))
(defun symp (x)
(member x '(0 1)))
(defun sym (x)
(if (consp x) (car x) 0))
(defun half-tape (x)
(if (endp x)
(equal x nil)
(and (symp (car x))
(half-tape (cdr x)))))
(defun tapep (x)
(and (consp x)
(half-tape (car x))
(half-tape (cdr x))))
(defun show-tape (tape)
(cond ((consp tape)
(rev1 (car tape)
(cons '[ (cons (sym (cdr tape)) (cons '] (cdr (cdr tape)))))))
(t nil)))
(defun current-sym (tape) (sym (cdr tape)))
(defun operationp (x)
(member x '(L R 0 1)))
(defun state-namep (x)
(symbolp x))
(defun turing-4-tuple (x)
(and (true-listp x)
(equal (len x) 4)
(state-namep (nth 0 x))
(symp (nth 1 x))
(operationp (nth 2 x))
(state-namep (nth 3 x))))
(defun turing-machinep (x)
(if (endp x)
(equal x nil)
(and (turing-4-tuple (car x))
(turing-machinep (cdr x)))))
(defun instr (st sym tm)
; This function retrieves the first 4-tuple in Turing machine tm with
; state-name st and symbol sym, if any. If no such tuple exists, it returns
; nil.
(if (endp tm)
nil
(if (and (equal st (nth 0 (car tm)))
(equal sym (nth 1 (car tm))))
(car tm)
(instr st sym (cdr tm)))))
(defun new-tape (op tape)
; Returns a new tape by carrying out operation op on tape.
(case op
(L (cons (cdr (car tape))
(cons (sym (car tape))
(cdr tape))))
(R (cons (cons (sym (cdr tape))
(car tape))
(cdr (cdr tape))))
(otherwise
(cons (car tape)
(cons op (cdr (cdr tape)))))))
(defun test-tape (ops tape)
(cond ((endp ops) (list (show-tape tape)))
(t (cons (show-tape tape)
(test-tape (cdr ops)
(new-tape (car ops) tape))))))
(defthm test-tape-demo
(equal (test-tape '(L L L 1 R R R R R R 1 L L L) '(nil . nil))
'(([ 0 ])
([ 0 ])
([ 0 ] 0)
([ 0 ] 0 0)
([ 1 ] 0 0)
(1 [ 0 ] 0)
(1 0 [ 0 ])
(1 0 0 [ 0 ])
(1 0 0 0 [ 0 ])
(1 0 0 0 0 [ 0 ])
(1 0 0 0 0 0 [ 0 ])
(1 0 0 0 0 0 [ 1 ])
(1 0 0 0 0 [ 0 ] 1)
(1 0 0 0 [ 0 ] 0 1)
(1 0 0 [ 0 ] 0 0 1)))
:rule-classes nil)
(defun tmi (st tape tm n)
(declare (xargs :measure (nfix n)))
(cond ((zp n) nil)
((instr st (current-sym tape) tm)
(tmi (nth 3 (instr st (current-sym tape) tm))
(new-tape (nth 2 (instr st (current-sym tape) tm)) tape)
tm
(- n 1)))
(t tape)))
(defconst *rogers-tm*
'((Q0 1 0 Q1)
(Q1 0 R Q2)
(Q2 1 0 Q3)
(Q3 0 R Q4)
(Q4 1 R Q4)
(Q4 0 R Q5)
(Q5 1 R Q5)
(Q5 0 1 Q6)
(Q6 1 R Q6)
(Q6 0 1 Q7)
(Q7 1 L Q7)
(Q7 0 L Q8)
(Q8 1 L Q1)
(Q1 1 L Q1)))
(defconst *example-tape*
'(nil . (1 1 1 1 1)))
(defthm rogers-tm-demo
(let ((tape *example-tape*))
(and (equal (show-tape tape) '([ 1 ] 1 1 1 1))
(equal (show-tape (tmi 'Q0 tape *rogers-tm* 77))
nil)
(equal (show-tape (tmi 'Q0 tape *rogers-tm* 78))
'(0 0 0 0 [ 0 ] 0 1 1 1 1 1 1 1 1))))
:rule-classes nil)
; My plan is to implement a Turing machine interpreter on M1 by representing a
; tape as a natural number whose bits correspond to the 0s and 1s on the tape.
; Similarly, I will transform the Turing machine program into a natural number
; that can be unpacked by M1 into the ``same'' 4-tuples. However, the presence
; of the symbols in the definition of Turing machines prevents us from direct
; numeric translation. So step 1 is to convert our Turing machine program into
; something involving only 4-tuples of numbers. We'll rename the states to be
; the consecutive natural numbers and we'll represent op=L with 2 and op=R with
; 3, so legal ops in the new representation will be 0, 1, 2, 3. We'll define
; tmi1 to operate on these programs and prove that it is equivalent to tmi.
; Step 2 will introduce tmi2, in which the Turing machine program is a single
; big number. We'll prove tmi1 equivalent to tmi2.
; Step 3 will introduce tmi3, in which the tape is a big number. We'll prove
; tmi2 equivalent to tmi3.
; Step 4 will define m1-tmi which is the algorithm we'll implement on M1. We
; will prove tmi equivalent to m1-tmi. Thus, it will remain only to prove the
; M1 code correct.
(defun renaming-map2 (st i map)
(cond ((assoc st map)
(mv i map))
(t (mv (+ i 1)
(cons (cons st i) map)))))
(defun renaming-map1 (tm i map)
(cond ((endp tm) map)
(t (let ((st-in (nth 0 (car tm)))
(st-out (nth 3 (car tm))))
(mv-let (i map)
(renaming-map2 st-in i map)
(mv-let (i map)
(renaming-map2 st-out i map)
(renaming-map1 (cdr tm) i map)))))))
(defun renaming-map (st tm)
(mv-let (i map)
(renaming-map2 st 0 nil)
(renaming-map1 tm i map)))
(defun tm-to-tm1 (tm map)
(cond ((endp tm) nil)
(t (let ((st-in (nth 0 (car tm)))
(sym (nth 1 (car tm)))
(op (nth 2 (car tm)))
(st-out (nth 3 (car tm))))
(cons (list (cdr (assoc st-in map))
sym
(case op (L 2) (R 3) (otherwise op))
(cdr (assoc st-out map)))
(tm-to-tm1 (cdr tm) map))))))
(defun assoc-inverse (key alist)
(cond ((endp alist) nil)
((equal key (cdr (car alist))) (car alist))
(t (assoc-inverse key (cdr alist)))))
(defun tm1-to-tm (tm1 map)
(cond ((endp tm1) nil)
(t (let ((st-in (nth 0 (car tm1)))
(sym (nth 1 (car tm1)))
(op (nth 2 (car tm1)))
(st-out (nth 3 (car tm1))))
(cons (list (car (assoc-inverse st-in map))
sym
(case op (2 'L) (3 'R) (otherwise op))
(car (assoc-inverse st-out map)))
(tm1-to-tm (cdr tm1) map))))))
(defun descending-map (map)
(cond ((endp map) t)
((endp (cdr map)) t)
((> (cdr (car map)) (cdr (car (cdr map))))
(descending-map (cdr map)))
(t nil)))
(defun total-map (tm map)
(cond ((endp tm) t)
(t (let ((st-in (nth 0 (car tm)))
(st-out (nth 3 (car tm))))
(and (assoc st-in map)
(assoc st-out map)
(total-map (cdr tm) map))))))
(defun natp-map (map)
(cond ((endp map) t)
(t (and (natp (cdr (car map)))
(natp-map (cdr map))))))
(defthm natp-map-renaming-map
(implies (and (natp-map map)
(natp i))
(natp-map (renaming-map1 tm i map))))
(defthm renaming-map-preserves-map
(implies (assoc st map)
(equal (assoc st (renaming-map1 tm i map))
(assoc st map))))
(defthm total-map-renaming-map
(total-map tm (renaming-map1 tm i map)))
(defthm descending-map-renaming-map
(implies (and (natp i)
(descending-map map)
(or (not (consp map))
(< (cdr (car map)) i)))
(descending-map (renaming-map1 tm i map))))
(defthm assoc-inverse-assoc-lemma
(implies (and (consp alist)
(not (equal key (car (car alist))))
(assoc key (cdr alist))
(integerp (cdr (car alist)))
(<= 0 (cdr (car alist)))
(natp-map (cdr alist))
(< (cdr (car (cdr alist)))
(cdr (car alist)))
(descending-map (cdr alist)))
(not (equal (cdr (assoc key (cdr alist)))
(cdr (car alist)))))
:otf-flg t)
(defthm assoc-inverse-assoc
(implies (and (assoc key alist)
(natp-map alist)
(descending-map alist))
(equal (assoc-inverse (cdr (assoc key alist)) alist)
(assoc key alist))))
(defthm car-assoc
(implies (assoc key alist)
(equal (car (assoc key alist)) key)))
(defthm equal-len-0
(equal (equal (len x) 0) (atom x)))
(defthm equal-len-1
(equal (equal (len x) 1)
(and (consp x)
(atom (cdr x)))))
(defthm tm-to-tm1-to-tm
(implies (and (turing-machinep tm)
(natp-map map)
(total-map tm map)
(descending-map map))
(equal (tm1-to-tm (tm-to-tm1 tm map) map)
tm)))
(defun new-tape1 (op1 tape)
; Like new-tape, but uses numeric ops
(case op1
((0 1)
(cons (car tape)
(cons op1 (cdr (cdr tape)))))
(2 (cons (cdr (car tape))
(cons (sym (car tape))
(cdr tape))))
(otherwise (cons (cons (sym (cdr tape))
(car tape))
(cdr (cdr tape))))))
(defun tmi1 (st tape tm1 n)
; Like tmi but tm1 is a list of 4-tuples composed entirely of numbers.
(declare (xargs :measure (nfix n)))
(cond ((zp n) nil)
((instr st (current-sym tape) tm1)
(tmi1 (nth 3 (instr st (current-sym tape) tm1))
(new-tape1 (nth 2 (instr st (current-sym tape) tm1)) tape)
tm1
(- n 1)))
(t tape)))
(defthm car-instr
(implies (turing-machinep tm)
(and (equal (car (instr st sym tm))
(if (instr st sym tm)
st
nil))
(equal (car (cdr (instr st sym tm)))
(if (instr st sym tm)
sym
nil)))))
(defthm instr-implies-mapped-instr
(implies (and (turing-machinep tm)
(natp-map map)
(total-map tm map)
(descending-map map)
(instr st sym tm))
(instr (cdr (assoc st map)) sym (tm-to-tm1 tm map))))
(defthm cdr-assoc-descending-lemma
(implies (and (consp map)
(descending-map map)
(force (assoc key (cdr map))))
(< (cdr (assoc key (cdr map))) (cdr (car map))))
:rule-classes :linear)
(defthm map-property
(implies (and (natp-map map)
(descending-map map))
(equal (equal (cdr (assoc key1 map))
(cdr (assoc key2 map)))
(if (assoc key1 map)
(if (assoc key2 map)
(equal key1 key2)
nil)
(if (assoc key2 map)
nil
t)))))
(defthm instr-implies-mapped-instr-vice-versa
(implies (and (turing-machinep tm)
(natp-map map)
(total-map tm map)
(descending-map map)
(not (instr st sym tm)))
(not (instr (cdr (assoc st map)) sym (tm-to-tm1 tm map)))))
(defthm instr-implies-assoc
(implies (and (turing-machinep tm)
(instr st sym tm))
(assoc st tm)))
(defthm mapped-instr
(implies (and (turing-machinep tm)
(natp-map map)
(total-map tm map)
(descending-map map))
(equal (instr (cdr (assoc st map)) sym (tm-to-tm1 tm map))
(if (instr st sym tm)
(let ((st-in (nth 0 (instr st sym tm)))
(sym (nth 1 (instr st sym tm)))
(op (nth 2 (instr st sym tm)))
(st-out (nth 3 (instr st sym tm))))
(list (cdr (assoc st-in map))
sym
(case op (L 2) (R 3) (otherwise op))
(cdr (assoc st-out map))))
nil))))
(defthm symbolp-st-out-instr
(implies (and (turing-machinep tm)
(instr st sym tm))
(symbolp (car (cdr (cdr (cdr (instr st sym tm))))))))
(defthm total-map-covers-tm
(implies (and (turing-machinep tm)
(instr st sym tm)
(total-map tm map))
(assoc (car (cdr (cdr (cdr (instr st sym tm))))) map)))
(defthm mapped-new-tape1
(implies (natp op1)
(equal (new-tape1 op1 tape)
(new-tape (case op1 ((0 1) op1) (2 'L) (otherwise 'R))
tape))))
(defthm op-instr
(implies (and (turing-machinep tm)
(instr st sym tm)
(not (equal (nth 2 (instr st sym tm)) 'L))
(not (equal (nth 2 (instr st sym tm)) 'R))
(not (equal (nth 2 (instr st sym tm)) 0)))
(equal (car (cdr (cdr (instr st sym tm)))) 1)))
(defthm op-instr-lessp-trick
(implies (and (turing-machinep tm)
(instr st sym tm))
(< (car (cdr (cdr (instr st sym tm)))) 2))
:rule-classes :linear)
(defthm tmi1-is-tmi-lemma
(implies (and (symbolp st)
(tapep tape)
(turing-machinep tm)
(natp-map map)
(total-map tm map)
(assoc st map)
(descending-map map))
(equal (tmi1 (cdr (assoc st map))
tape
(tm-to-tm1 tm map)
n)
(tmi st tape tm n)))
:hints (("Goal" :induct (tmi st tape tm n))
("Subgoal *1/2.13" :expand (TMI1 (CDR (ASSOC-EQUAL ST MAP))
TAPE (TM-TO-TM1 TM MAP)
N))
("Subgoal *1/2.5''" :expand (TMI1 (CDR (ASSOC-EQUAL ST MAP))
TAPE (TM-TO-TM1 TM MAP)
N)))
:rule-classes nil)
(defthm tmi1-is-tmi
(implies (and (symbolp st)
(tapep tape)
(turing-machinep tm))
(equal (tmi1 (cdr (assoc st (renaming-map st tm)))
tape
(tm-to-tm1 tm (renaming-map st tm))
n)
(tmi st tape tm n)))
:hints (("Goal"
:use ((:instance tmi1-is-tmi-lemma (map (renaming-map st tm)))))))
; That completes step 1. Now we move to step 2: introduce tmi2, in which the
; Turing machine program is a single big number. We'll prove tmi1 equivalent
; to tmi2.
; Consider a tm1-style machine. It is a list of 4-tuples of natural numbers.
; Each tuple is (st-in sym op st-out) where st-in and st-out are arbitrary nats
; (``state numbers''), sym is 0 or 1 and op is a nat less than 4. We will
; first determine the width, w, into which we can pack all the state numbers.
(defun log2 (n)
(cond ((zp n) 0)
((equal n 1) 0)
(t (+ 1 (log2 (floor n 2))))))
(defun log2-implies-expt-upperbound-hint (n w)
(cond ((zp n) (list n w))
((equal n 1) (list n w))
(t (log2-implies-expt-upperbound-hint (floor n 2) (- w 1)))))
(defthm log2-implies-expt-upperbound
(implies (and (natp w)
(natp n))
(equal (< w (log2 n))
(not (< n (expt 2 (+ w 1))))))
:hints (("Goal" :induct (log2-implies-expt-upperbound-hint n w))))
(defthm log2-implies-expt-upperbound-corollary
(implies (and (not (< w (+ 1 (log2 n))))
(natp w)
(natp n))
(< n (expt 2 w)))
:rule-classes ((:linear)
(:linear :corollary
(implies (and (not (< n (expt 2 w)))
(natp w)
(natp n))
(< w (+ 1 (log2 n))))))
:hints (("Goal" :use (:instance log2-implies-expt-upperbound
(w (- w 1))
(n n))
:in-theory (disable log2-implies-expt-upperbound))))
(defun max-width1 (tm1)
(if (endp tm1)
0
(max (+ 1 (max (log2 (nth 0 (car tm1)))
(log2 (nth 3 (car tm1)))))
(max-width1 (cdr tm1)))))
(defun max-width (tm map)
(max-width1 (tm-to-tm1 tm map)))
(defun turing1-4-tuple (x w)
(and (true-listp x)
(equal (len x) 4)
(natp (nth 0 x))
(< (nth 0 x) (expt 2 w))
(natp (nth 1 x))
(< (nth 1 x) 2)
(natp (nth 2 x))
(< (nth 2 x) 4)
(natp (nth 3 x))
(< (nth 3 x) (expt 2 w))))
(defun turing1-machinep (x w)
(if (endp x)
(equal x nil)
(and (turing1-4-tuple (car x) w)
(turing1-machinep (cdr x) w))))
; We will pack each tuple into a ``cell'' using simple arithmetic. The two
; state numbers fit in w bits each, the sym fits in 1 bit, and the op fits in
; 2. However, we will allocate 3 bits for op. Consider how we'll ``assoc''
; for a given st-in and sym through the big number that is the concatenation of
; all these cells. We will repeatedly extract the st-in and sym from the
; low-order cell and if they're not the ones we are looking for we'll shift the
; big number right by the cell length. But how do we know when we've reached
; the end? (A cell of all 0s is perfectly legal.) We must have a non-0 marker
; cell. That will be an otherwise all 0 cell with an op of 4. Thus, ops will
; have 3 bits allocated for them.
(defun make-cell (tuple w)
; W is the number of bits required to represent a state number. For example,
; if the highest state number is 8, then four bits are required: 8 = #b1000.
; (So w is in fact (log2 <max-state-number>)+1.
; I pack tuple with st-in and sym in the least significant bits, so (mod cell
; (expt 2 (+ 1 w))) gets them both.
(let ((st-in (nth 0 tuple)) ; w bits
(sym (nth 1 tuple)) ; 1 bit
(op (nth 2 tuple)) ; 3 bits (see above)
(st-out (nth 3 tuple))) ; w bits
(+ (* (expt 2 (+ 3 1 w)) st-out)
(* (expt 2 (+ 1 w)) op)
(* (expt 2 w) sym)
st-in)))
; Now we use make-cell to create a big number representing the given tmi1-style
; machine.
(defun ncons (cell tail w)
(+ cell
(* (expt 2 (+ 4 (* 2 w))) tail)))
(defun ncar (tm w)
(mod tm (expt 2 (+ 4 (* 2 w)))))
(defun ncdr (tm w)
(ash tm (- (+ 4 (* 2 w)))))
(defun cellp (cell w)
(and (natp cell)
(< cell (expt 2 (+ 4 (* 2 w))))))
(defthm ncar-ncons
(implies (and (natp w)
(cellp cell w)
(natp tail))
(equal (ncar (ncons cell tail w) w)
cell)))
(defthm ncdr-ncons
(implies (and (natp w)
(cellp cell w)
(natp tail))
(equal (ncdr (ncons cell tail w) w)
tail)))
(defthm cellp-make-cell
(implies (and (natp w)
(turing1-4-tuple tuple w))
(cellp (make-cell tuple w) w))
:hints (("Goal" :nonlinearp t))
:rule-classes (:rewrite
(:linear :corollary
(implies (and (natp w)
(force (turing1-4-tuple tuple w)))
(<= 0 (make-cell tuple w))))
(:type-prescription :corollary
(implies (and (natp w)
(force (turing1-4-tuple tuple w)))
(integerp (make-cell tuple w))))))
(defthm ncdr-decreases
(implies (and (natp w)
(not (zp tm)))
(< (ncdr tm w) tm))
:rule-classes :linear)
(defthm natp-ncdr
(implies (and (natp w)
(natp tm))
(natp (ncdr tm w)))
:rule-classes :type-prescription)
(defthm positive-natp-ncons
(implies (and (natp w)
(natp cell)
(integerp tail)
(< 0 tail))
(and (integerp (ncons cell tail w))
(< 0 (ncons cell tail w))))
:rule-classes
((:type-prescription :corollary
(implies (and (force (natp w))
(force (natp cell))
(force (integerp tail))
(force (< 0 tail)))
(integerp (ncons cell tail w))))
(:linear :corollary
(implies (and (force (natp w))
(force (natp cell))
(force (integerp tail))
(force (< 0 tail)))
(< 0 (ncons cell tail w))))))
(in-theory (disable ncons ncar ncdr cellp))
(defun nst-in (cell w)
(mod cell (expt 2 w)))
(defun nsym (cell w)
(mod (ash cell (- w)) 2))
(defun nop (cell w)
(mod (ash cell (- (+ 1 w))) (expt 2 3)))
(defun nst-out (cell w)
(mod (ash cell (- (+ 4 w)))
(expt 2 w)))
(defun nnil (w)
(make-cell (list 0 0 4 0) w))
(defun ncode (tm w)
(cond ((endp tm) (nnil w))
(t (ncons (make-cell (car tm) w)
(ncode (cdr tm) w)
w))))
(defthm positive-natp-nnil
(implies (natp w)
(and (integerp (nnil w))
(< 0 (nnil w))))
:rule-classes :type-prescription)
(defthm positive-natp-ncode
(implies (and (natp w)
(turing1-machinep tm w))
(and (integerp (ncode tm w))
(< 0 (ncode tm w))))
:rule-classes ((:type-prescription :corollary
(implies (and (force (natp w))
(force (turing1-machinep tm w)))
(integerp (ncode tm w))))
(:linear :corollary
(implies (and (force (natp w))
(force (turing1-machinep tm w)))
(< 0 (ncode tm w))))))
(defthm nst-in-make-cell
(implies (and (natp w)
(turing1-4-tuple tuple w))
(equal (nst-in (make-cell tuple w) w)
(nth 0 tuple))))
(defthm nsym-make-cell
(implies (and (natp w)
(turing1-4-tuple tuple w))
(equal (nsym (make-cell tuple w) w)
(nth 1 tuple))))
(defthm nop-make-cell
(implies (and (natp w)
(turing1-4-tuple tuple w))
(equal (nop (make-cell tuple w) w)
(nth 2 tuple)))
:hints (("Goal" :in-theory (e/d (acl2::scatter-exponents-theory)
(acl2::gather-exponents-theory))
:nonlinearp t
:do-not-induct t)))
(defthm nst-out-make-cell
(implies (and (natp w)
(turing1-4-tuple tuple w))
(equal (nst-out (make-cell tuple w) w)
(nth 3 tuple)))
:hints (("Goal" :in-theory (e/d (acl2::scatter-exponents-theory)
(acl2::gather-exponents-theory))
:nonlinearp t
:do-not-induct t)))
(defthm nop-nnil
(implies (natp w)
(equal (nop (nnil w) w) 4))
:hints (("Goal" :in-theory (e/d (acl2::scatter-exponents-theory)
(acl2::gather-exponents-theory))
:nonlinearp t
:do-not-induct t)))
(defthm not-equal-ncons-nnil
(implies (and (natp w)
(cellp cell w)
(turing1-machinep tm w))
(< (nnil w) (ncons cell (ncode tm w) w)))
:rule-classes :linear
:hints (("Goal" :nonlinearp t
:in-theory (enable ncons cellp))
("Subgoal *1/1'''"
:in-theory nil
:use (:instance (:theorem
(implies (and (natp i)
(natp j)
(natp cell)
(< i j))
(< (expt 2 i) (+ cell (expt 2 j)))))
(i (+ 3 W))
(j (+ 7 (* 3 W)))))
("Subgoal *1/1.3" :in-theory (enable natp))
("Subgoal *1/1.2" :in-theory (enable natp))
("Subgoal *1/1.1" :in-theory (enable natp))))
(in-theory (disable nst-in nsym nop nst-out make-cell nnil))
(defun ninstr (st sym tm w)
(if (natp w)
(if (zp tm)
-1
(if (equal tm (nnil w))
-1
(let ((cell (ncar tm w)))
(if (and (equal st (nst-in cell w))
(equal sym (nsym cell w)))
cell
(ninstr st sym (ncdr tm w) w)))))
-1))
(defthm ninstr-ncode
(implies (and (force (natp w))
(force (natp st))
(force (< st (expt 2 w)))
(force (natp sym))
(force (< sym 2))
(force (turing1-machinep tm w)))
(equal (ninstr st sym (ncode tm w) w)
(if (instr st sym tm)
(make-cell (instr st sym tm) w)
-1))))
(defun tmi2 (st tape tm2 w n)
(declare (xargs :measure (nfix n)))
(cond ((zp n) nil)
((equal (ninstr st (current-sym tape) tm2 w) -1)
tape)
(t
(tmi2 (nst-out (ninstr st (current-sym tape) tm2 w) w)
(new-tape1 (nop (ninstr st (current-sym tape) tm2 w) w) tape)
tm2
w
(- n 1)))))
(defthm natp-make-cell
(implies (and (force (natp w))
(force (turing1-4-tuple tuple w)))
(natp (make-cell tuple w)))
:rule-classes :type-prescription
:hints (("Goal" :in-theory (enable make-cell))))
(defthm properties-of-instr
(implies (and (force (turing1-machinep tm w))
(force (natp w))
(instr st sym tm))
(and (equal (nth 0 (instr st sym tm)) st)
(equal (nth 1 (instr st sym tm)) sym)
(integerp (nth 2 (instr st sym tm)))
(<= 0 (nth 2 (instr st sym tm)))
(< (nth 2 (instr st sym tm)) 4)
(integerp (nth 3 (instr st sym tm)))
(<= 0 (nth 3 (instr st sym tm)))
(< (nth 3 (instr st sym tm)) (expt 2 w))))
:rule-classes
((:rewrite :corollary
(implies (and (force (turing1-machinep tm w))
(force (natp w))
(instr st sym tm))
(and (equal (nth 0 (instr st sym tm)) st)
(equal (nth 1 (instr st sym tm)) sym))))
(:type-prescription :corollary
(implies (and (force (turing1-machinep tm w))
(force (natp w))
(instr st sym tm))
(and (integerp (nth 2 (instr st sym tm)))
(<= 0 (nth 2 (instr st sym tm))))))
(:type-prescription :corollary
(implies (and (force (turing1-machinep tm w))
(force (natp w))
(instr st sym tm))
(and (integerp (nth 3 (instr st sym tm)))
(<= 0 (nth 3 (instr st sym tm))))))
(:linear :corollary
(implies (and (force (turing1-machinep tm w))
(force (natp w))
(instr st sym tm))
(and (<= 0 (nth 2 (instr st sym tm)))
(< (nth 2 (instr st sym tm)) 4)
(<= 0 (nth 3 (instr st sym tm)))
(< (nth 3 (instr st sym tm)) (expt 2 w)))))))
(defthm turing1-4-tuple-instr
(implies (and (natp w)
(instr st sym tm)
(turing1-machinep tm w))
(turing1-4-tuple (instr st sym tm) w))
:hints (("Goal" :in-theory (disable turing1-4-tuple))))
(defthm tapep-new-tape1
(implies (and (tapep tape)
(natp op))
(tapep (new-tape1 op tape))))
(defthm natp-current-sym
(implies (tapep tape)
(and (integerp (current-sym tape))
(<= 0 (current-sym tape))
(< (current-sym tape) 2)))
:rule-classes
((:type-prescription :corollary
(implies (tapep tape)
(integerp (current-sym tape))))
(:linear :corollary
(implies (tapep tape)
(and (<= 0 (current-sym tape))
(< (current-sym tape) 2))))))
(defthm tmi2-is-tmi1
(implies (and (natp w)
(natp st)
(< st (expt 2 w))
(tapep tape)
(turing1-machinep tm1 w))
(equal (tmi2 st tape (ncode tm1 w) w n)
(tmi1 st tape tm1 n)))
:hints (("Goal" :in-theory (disable tmi1-is-tmi ninstr turing1-4-tuple instr ncode
current-sym nth nth-add1!
tapep new-tape1 MAPPED-NEW-TAPE1
))))
; That completes step 2. Step 3 will introduce tmi3, in which the tape is a
; big number. We'll prove tmi2 equivalent to tmi3.
; Our next goal is to re-represent the tape as a pair of natural numbers, (n . pos)
; where the bits between the bottom and the topmost 1 in the binary expansion of n
; represent the tape and pos is the bit position of the current bit. For example,
; ((0 1 0 0) . (1 1 0 0 0))
; = (0 0 1 0 [ 1 ] 1 0 0 0)
; = (#B0010110001 . 4)
; We need to be able to convert back and forth between tapes and these pairs.
; (i-am-here)
(defun convert-half-tape-to-nat (htape)
(cond ((endp htape) 0)
(t (+ (car htape)
(* 2 (convert-half-tape-to-nat (cdr htape)))))))
(defun convert-tape-to-tapen-pos (tape)
(let ((lo (convert-half-tape-to-nat (rev (car tape))))
(lo-size (len (car tape)))
(hi (convert-half-tape-to-nat (cdr tape)))
(hi-size (len (cdr tape))))
(mv (+ lo (* (expt 2 lo-size) hi) (expt 2 (+ lo-size hi-size)))
lo-size)))
(defun nat-to-half-tape (n size)
(cond ((zp size) nil)
(t (cons (mod n 2) (nat-to-half-tape (floor n 2) (- size 1))))))
(defun decode-tape-and-pos (tapen pos)
(let* ((n tapen)
(lo-size pos)
(hi-size (log2 n)))
(cons (rev (nat-to-half-tape n lo-size))
(nat-to-half-tape (ash n (- lo-size))
(- hi-size lo-size)))))
(in-theory (enable member))
(defthm natp-convert-half-tape-to-nat
(implies (half-tape htape)
(and (integerp (convert-half-tape-to-nat htape))
(<= 0 (convert-half-tape-to-nat htape))))
:rule-classes ((:rewrite) (:type-prescription)
(:linear :corollary
(implies (half-tape htape)
(<= 0 (convert-half-tape-to-nat htape))))))
(defthm half-tape-conversion
(implies (half-tape htape)
(equal (nat-to-half-tape (convert-half-tape-to-nat htape)
(len htape))
htape)))
(defthm half-tape-append
(implies (half-tape x)
(equal (half-tape (append x (list bit)))
(or (equal bit 0)
(equal bit 1)))))
(defthm half-tape-rev
(implies (half-tape x)
(half-tape (rev x))))
(defthm convert-half-tape-to-nat-append
(implies (and (half-tape htape)
(or (equal bit 0)
(equal bit 1)))
(equal (convert-half-tape-to-nat (append x (list bit)))
(+ (convert-half-tape-to-nat x) (* bit (expt 2 (len x)))))))
(defthm half-tape-below-expt
(implies (and (natp k)
(half-tape htape))
(equal (NAT-TO-HALF-TAPE (+ (CONVERT-HALF-TAPE-TO-NAT htape)
(* k (EXPT 2 (LEN htape))))
(LEN htape))
htape))
:rule-classes nil)
(defthm len-rev
(equal (len (rev x)) (len x)))
(defthm rev-rev
(implies (true-listp x)
(equal (rev (rev x)) x)))
(defthm half-tape-implies-true-listp
(implies (half-tape htape)
(true-listp htape)))
(defthm convert-half-tape-to-nat-upper-bound
(implies (half-tape x)
(< (convert-half-tape-to-nat x) (expt 2 (len x))))
:hints (("Goal" :nonlinearp t))
:rule-classes :linear)
(defthm convert-half-tape-to-nat-upper-bound-corollary
(implies (half-tape x)
(< (convert-half-tape-to-nat (rev x)) (expt 2 (len x))))
:hints (("Goal" :nonlinearp t))
:rule-classes :linear)
(defun hint (k n) (if (zp n) (list k n) (hint (floor k 2) (- n 1))))
(defthm log2-sum
(implies (and (natp n)
(natp k)
(< k (expt 2 n)))
(equal (log2 (+ k (expt 2 n))) n))
:hints (("Goal" :induct (hint k n)))
:rule-classes nil)
(defthm log2-sum-corollary
(implies (and (half-tape htape1)
(half-tape htape2))
(equal (LOG2 (+ (CONVERT-HALF-TAPE-TO-NAT (REV htape1))
(* (CONVERT-HALF-TAPE-TO-NAT htape2)
(EXPT 2 (LEN htape1)))
(EXPT 2
(+ (LEN htape1)
(LEN htape2)))))
(+ (LEN htape1)
(LEN htape2))))
:hints (("Goal" :nonlinearp t
:use (:instance log2-sum
(k (+ (CONVERT-HALF-TAPE-TO-NAT (REV htape1))
(* (CONVERT-HALF-TAPE-TO-NAT htape2)
(EXPT 2 (LEN htape1)))))
(n (+ (LEN htape1)
(LEN htape2)))))))
(defthm floor-lemma-1
(implies (and (natp i)
(natp j)
(natp n)
(natp m)
(< i (expt 2 n)))
(equal (floor (+ i (* j (expt 2 n)) (expt 2 (+ n m)))
(expt 2 n))
(+ j (expt 2 m)))))
(defthm get-the-upper-half-tape
(IMPLIES (HALF-TAPE TAPE2)
(EQUAL (NAT-TO-HALF-TAPE (+ (CONVERT-HALF-TAPE-TO-NAT TAPE2)
(EXPT 2 (LEN TAPE2)))
(LEN TAPE2))
TAPE2)))
(defthm tape-conversion-theorem
(implies (tapep tape)
(equal (decode-tape-and-pos
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape)))
tape))
:hints
(("Goal" :do-not-induct t)
("Goal'4'" :use (:instance half-tape-below-expt
(htape (rev tape1))
(k (+ (CONVERT-HALF-TAPE-TO-NAT tape2)
(expt 2 (len tape2))))))))
#| this npair theorem is no longer possible to state because it abuses types
(defthm tape-conversion-theorem-stronger
(implies (or (tapep tape)
(equal tape nil))
(equal (convert-npair-to-tape
(convert-tape-to-npair tape))
tape))
:hints
(("Goal" :in-theory (disable convert-npair-to-tape
convert-tape-to-npair))))
|#
; I think of the theorem above as an important sanity check. But the real work
; comes in implementing and verifying the numeric analogues of current-sym and
; new-tape:
(defun current-symn (tapen pos)
; If we shift the tape down by pos and find that it is just 1, then we've
; reached the end of the tape and everything thereafter is 0. That 1 is just a
; marker, not a legitimate bit.
(if (equal pos (log2 tapen))
0
(mod (ash tapen (- pos)) 2)))
(defthm current-symn-convert-tape-to-tapen-pos
(implies (tapep tape)
(equal (current-symn (mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape)))
(current-sym tape))))
(defun new-tape2 (op tapen pos)
(CASE OP
((0 1)
(if (equal pos (log2 tapen))
(if (equal op 0)
(mv (+ tapen (expt 2 pos)) pos)
(mv (+ tapen (expt 2 (+ pos 1))) pos))
(let ((sym (current-symn tapen pos)))
(cond ((equal sym op)
(mv tapen pos))
((equal sym 0)
(mv (+ tapen (expt 2 pos))
pos))
(t (mv (- tapen (expt 2 pos))
pos))))))
(2 (if (zp pos)
(mv (* 2 tapen) 0)
(mv tapen (- pos 1))))
(otherwise (if (equal pos (log2 tapen))
(mv (+ (- tapen (expt 2 pos)) (expt 2 (+ 1 pos)))
(+ 1 pos))
(mv tapen (+ pos 1))))))
(defthm half-tape-below-expt-rule1
(implies (and (natp k)
(natp n)
(half-tape htape))
(equal (NAT-TO-HALF-TAPE (+ (CONVERT-HALF-TAPE-TO-NAT (REV htape))
(* k (EXPT 2 (LEN htape)))
(EXPT 2 (+ n (LEN htape))))
(LEN htape))
(rev htape)))
:hints (("Goal" :do-not-induct t
:use (:instance half-tape-below-expt
(htape (REV htape))
(k (+ k (EXPT 2 n)))))))
(defthm half-tape-below-expt-rule2
(implies (and (natp k)
(natp i)
(natp n)
(half-tape htape))
(equal (NAT-TO-HALF-TAPE (+ (CONVERT-HALF-TAPE-TO-NAT (REV htape))
(* k (EXPT 2 (+ i (LEN htape))))
(EXPT 2 (+ i n (LEN htape))))
(LEN htape))
(rev htape)))
:hints (("Goal" :do-not-induct t
:in-theory (disable half-tape-below-expt-rule1)
:use (:instance half-tape-below-expt-rule1
(k (* k (expt 2 i)))
(n (+ i n))))))
(defthm floor-lemma-1-special-case
(implies (and (natp i)
(natp j)
(natp n)
(natp m)
(< i (expt 2 n)))
(equal (floor (+ i
(* j (expt 2 (+ 1 n)))
(expt 2 (+ 1 m n)))
(expt 2 n))
(+ (* 2 j) (* 2 (expt 2 m)))))
:hints (("Goal" :in-theory (disable floor-lemma-1)
:use (:instance floor-lemma-1
(j (* 2 j))
(m (+ 1 m))))))
(defthm log2-sum-corollary2
(implies (and (natp n)
(natp k1)
(natp k2)
(< (+ k1 k2) (expt 2 n)))
(equal (log2 (+ k1 k2 (expt 2 n))) n))
:hints (("Goal" :use (:instance log2-sum
(k (+ k1 k2))))))
(defthm half-tape-below-expt-rule3
(implies (and (natp k)
(natp i)
(natp n)
(half-tape htape))
(equal (NAT-TO-HALF-TAPE (+ (CONVERT-HALF-TAPE-TO-NAT (REV htape))
(expt 2 (len htape))
(* k (EXPT 2 (+ i (LEN htape))))
(EXPT 2 (+ i n (LEN htape))))
(LEN htape))
(rev htape)))
:hints (("Goal"
:use (:instance half-tape-below-expt
(htape (REV htape))
(k (+ 1 (* k (expt 2 i)) (expt 2 (+ i n))))))))
(defthm floor-lemma-1-special-case-2
(implies (and (natp i)
(natp j)
(natp n)
(natp m)
(< i (expt 2 n)))
(equal (floor (+ i
(expt 2 n)
(* j (expt 2 (+ 1 n)))
(expt 2 (+ 1 m n)))
(expt 2 n))
(+ 1 (* 2 j) (* 2 (expt 2 m)))))
:hints (("Goal" :in-theory (disable floor-lemma-1)
:use (:instance floor-lemma-1
(j (+ 1 (* 2 j)))
(m (+ 1 m))))))
(defthm log2-sum-corollary3
(implies (and (natp n)
(natp k1)
(natp k2)
(natp k3)
(< (+ k1 k2 k3) (expt 2 n)))
(equal (log2 (+ k1 k2 k3 (expt 2 n))) n))
:hints (("Goal" :use (:instance log2-sum
(k (+ k1 k2 k3))))))
(defthm half-tape-below-expt-rule4
(implies (half-tape htape)
(equal (nat-to-half-tape (+ (convert-half-tape-to-nat htape)
(expt 2 (len htape)))
(len htape))
htape))
:hints (("Goal" :use (:instance half-tape-below-expt
(k 1))))
:rule-classes nil)
; !!! this is identical to log2-sum, which has rule-classes nil...
(defthm log2-sum-corollary4
(implies (and (natp n) (natp k) (< k (expt 2 n)))
(equal (log2 (+ k (expt 2 n))) n))
:hints (("Goal" :use log2-sum)))
(defthm floor-lemma-1-special-case-3
(implies (and (natp i)
(natp j)
(natp n)
(natp m)
(< i (expt 2 n)))
(equal (floor (+ i
(* j (expt 2 (+ 1 n)))
(expt 2 (+ 1 n m)))
(expt 2 (+ 1 n)))
(+ j (expt 2 m))))
:hints (("Goal" :nonlinearp t
:in-theory (disable floor-lemma-1)
:use (:instance floor-lemma-1
(n (+ n 1))))))
(defthm rationalp-intp-+
(implies (and (common-lisp::rationalp x)
(common-lisp::rationalp y))
(common-lisp::rationalp (acl2::intp-+ x y)))
:rule-classes (:type-prescription :rewrite))
#|
(defun testn (op tape)
(equal (new-tape2 op (convert-tape-to-npair tape))
(convert-tape-to-npair (new-tape op tape))))|#
(defthm new-tape2-convert-tape-to-tapen-transformed
(implies (and (natp op)
; (< op 4)
(tapep tape))
(equal (new-tape2 op
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape)))
(convert-tape-to-tapen-pos (new-tape1 op tape)))))
(in-theory (disable current-sym current-symn
convert-tape-to-tapen-pos
decode-tape-and-pos
new-tape new-tape1 new-tape2 MAPPED-NEW-TAPE1 mv-nth))
(defthm new-tape2-convert-tape-to-tapen-pos
(implies (and (natp op)
; (< op 4)
(tapep tape))
(equal
(decode-tape-and-pos
(mv-nth 0 (new-tape2 op (mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape))))
(mv-nth 1 (new-tape2 op (mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape)))))
(new-tape1 op tape))))
(defun tmi3 (st tapen pos tm w n)
(declare (xargs :measure (nfix n)))
(cond ((zp n)
(mv 0 st tapen pos))
((equal (ninstr st (current-symn tapen pos) tm w) -1)
(mv 1 st tapen pos))
(t
(mv-let (new-tapen new-pos)
(new-tape2 (nop (ninstr st (current-symn tapen pos) tm w) w)
tapen pos)
(tmi3 (nst-out (ninstr st (current-symn tapen pos) tm w) w)
new-tapen
new-pos
tm
w
(- n 1))))))
#| I prefer to avoid yet another level...
(defun tmi3! (st npair tm w n)
(let* ((ans (tmi3 st npair tm w n))
(haltedp (nth 0 ans))
(final-st (nth 1 ans))
(final-tape-pair (nth 2 ans)))
(declare (ignore final-st))
(if haltedp
final-tape-pair
nil)))
|#
(defthm nop-ninstr
(implies (and (natp w)
(natp tm)
(natp st)
(< st (expt 2 w))
(natp sym)
(< sym 2)
(not (equal (ninstr st sym tm w) -1)))
(and (integerp (nop (ninstr st sym tm w) w))
(<= 0 (nop (ninstr st sym tm w) w))
(< (nop (ninstr st sym tm w) w) 8)))
:hints (("Subgoal *1/3''" :in-theory (enable nop ncar)))
:rule-classes
((:type-prescription :corollary
(implies (and (force (natp w))
(force (natp tm))
(force (natp st))
(force (< st (expt 2 w)))
(force (natp sym))
(force (< sym 2))
(not (equal (ninstr st sym tm w) -1)))
(integerp (nop (ninstr st sym tm w) w))))
(:linear :corollary
(implies (and (force (natp w))
(force (natp tm))
(force (natp st))
(force (< st (expt 2 w)))
(force (natp sym))
(force (< sym 2))
(not (equal (ninstr st sym tm w) -1)))
(and (<= 0 (nop (ninstr st sym tm w) w))
(< (nop (ninstr st sym tm w) w) 8))))))
(defthm nst-out-ninstr
(implies (and (natp w)
(natp tm)
(natp st)
(< st (expt 2 w))
(natp sym)
(< sym 2)
(not (equal (ninstr st sym tm w) -1)))
(and (integerp (nst-out (ninstr st sym tm w) w))
(<= 0 (nst-out (ninstr st sym tm w) w))
(< (nst-out (ninstr st sym tm w) w) (expt 2 w))))
:hints (("Subgoal *1/3''" :in-theory (enable nst-out ncar)))
:rule-classes
((:type-prescription :corollary
(implies (and (force (natp w))
(force (natp tm))
(force (natp st))
(force (< st (expt 2 w)))
(force (natp sym))
(force (< sym 2))
(not (equal (ninstr st sym tm w) -1)))
(integerp (nst-out (ninstr st sym tm w) w))))
(:linear :corollary
(implies (and (force (natp w))
(force (natp tm))
(force (natp st))
(force (< st (expt 2 w)))
(force (natp sym))
(force (< sym 2))
(not (equal (ninstr st sym tm w) -1)))
(and (<= 0 (nst-out (ninstr st sym tm w) w))
(< (nst-out (ninstr st sym tm w) w) (expt 2 w)))))))
(in-theory (disable tapep new-tape1))
; This rather hideous theorem is phrased to rewrite tmi3 into tmi2 terms.
; Specifically, the 0th result of tmi3 is 1 or 0 depending on tmi2, and
; if tmi2 is non-nil then the 2nd and 3rd results of tmi3 are the result of tmi2,
; properly converted.
(defthm tmi3-is-tmi2
(implies (and (natp w)
(natp st)
(< st (expt 2 w))
(tapep tape)
(natp tm))
(and
(equal (mv-nth 0
(tmi3 st
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape))
tm w n))
(if (tmi2 st tape tm w n) 1 0))
(implies
(tmi2 st tape tm w n)
(and (equal (mv-nth 2 (tmi3 st
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape))
tm w n))
(mv-nth 0 (convert-tape-to-tapen-pos (tmi2 st tape tm w n))))
(equal (mv-nth 3 (tmi3 st
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape))
tm w n))
(mv-nth 1 (convert-tape-to-tapen-pos (tmi2 st tape tm w n)))))))))
(defthm tapep-tmi2
(implies (and (natp w)
(natp st)
(< st (expt 2 w))
(tapep tape)
(natp tm))
(or (tapep (tmi2 st tape tm w n))
(equal (tmi2 st tape tm w n) nil)))
:rule-classes nil)
#| As I said previously, I am resolutely avoiding needing tmi3!
(defthm tmi3!-is-tmi2
(implies (and (natp w)
(natp st)
(< st (expt 2 w))
(tapep tape)
(natp tm))
(equal (convert-npair-to-tape (tmi3! st (convert-tape-to-npair tape) tm w n))
(tmi2 st tape tm w n)))
:hints (("Goal"
:use tapep-tmi2
:in-theory (disable tmi3!)
:do-not-induct t)))
(in-theory (disable tmi3!))
|#
; -----------------------------------------------------------------
; Now I relate tmi3 all the back to tmi. I need to establish the following hyps,
; which I discovered by making the three relevant rules force their hyps.
(defthm natp-cdr-assoc-map
(implies (and (natp-map map)
(assoc st map))
(natp (cdr (assoc st map))))
:rule-classes
((:rewrite :corollary
(implies (and (natp-map map)
(assoc st map))
(integerp (cdr (assoc st map)))))
(:type-prescription :corollary
(implies (and (natp-map map)
(assoc st map))
(integerp (cdr (assoc st map)))))
(:linear :corollary
(implies (and (natp-map map)
(assoc st map))
(<= 0 (cdr (assoc st map)))))))
(defthm natp-map-renaming-map-top
(natp-map (renaming-map st tm)))
(defthm assoc-st-renaming-map
(assoc st (renaming-map st tm)))
(defthm turing1-machinep-tm-to-tm1
(implies (and (natp w)
(turing-machinep tm)
(total-map tm map)
(natp-map map)
(<= (max-width tm map) w))
(turing1-machinep (tm-to-tm1 tm map) w)))
(defthm total-map-renaming-map-top
(total-map tm (renaming-map st tm)))
(defthm cdr-assoc-renaming-map-upperbound
(< (cdr (assoc st (renaming-map st tm)))
(expt 2 (max-width1 (tm-to-tm1 tm (renaming-map st tm))))))
; Wow! Ok, this is the theorem that shows that there is a way to start tmi3!
; so that it computes the same thing (modulo tape representation conversion) as
; tmi. In particular, this theorem rewrites tmi3 calls to tmi calls. The 0th
; result is 1 or 0 depending on whether tmi terminates and the 2nd and 3rd
; results are the corresponding parts of converting tmi's output from tape form
; to tapen and pos form.
(defthm tmi3-is-tmi
(implies
(and (symbolp st)
(tapep tape)
(turing-machinep tm))
(and
(equal
(mv-nth 0
(tmi3 (cdr (assoc st (renaming-map st tm)))
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape))
(ncode (tm-to-tm1 tm (renaming-map st tm))
(max-width1 (tm-to-tm1 tm (renaming-map st tm))))
(max-width1 (tm-to-tm1 tm (renaming-map st tm)))
n))
(if (tmi st tape tm n) 1 0))
(implies
(tmi st tape tm n)
(and (equal (mv-nth 2
(tmi3 (cdr (assoc st (renaming-map st tm)))
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape))
(ncode (tm-to-tm1 tm (renaming-map st tm))
(max-width1 (tm-to-tm1 tm (renaming-map st tm))))
(max-width1 (tm-to-tm1 tm (renaming-map st tm)))
n))
(mv-nth 0
(convert-tape-to-tapen-pos (tmi st tape tm n))))
(equal (mv-nth 3
(tmi3 (cdr (assoc st (renaming-map st tm)))
(mv-nth 0 (convert-tape-to-tapen-pos tape))
(mv-nth 1 (convert-tape-to-tapen-pos tape))
(ncode (tm-to-tm1 tm (renaming-map st tm))
(max-width1 (tm-to-tm1 tm (renaming-map st tm))))
(max-width1 (tm-to-tm1 tm (renaming-map st tm)))
n))
(mv-nth 1
(convert-tape-to-tapen-pos (tmi st tape tm n))))))))
:hints (("Goal" :do-not-induct t :in-theory (disable renaming-map))
("Goal''" :use (:instance tapep-tmi2
(st (cdr (assoc st (renaming-map st tm))))
(w (max-width1 (tm-to-tm1 tm (renaming-map st tm))))
(tm (ncode (tm-to-tm1 tm (renaming-map st tm))
(max-width1 (tm-to-tm1 tm (renaming-map st tm)))))))))
|