
Proving a Simple von Neumann Machine
Turing Equivalent

J Strother Moore

Department of Computer Science
University of Texas at Austin

presented at
University of Edinburgh

August, 2012

1

Prologue

I teach a course on how to build formal models of computing

machines.

We construct a formal model of the Java Virtual Machine

(JVM), starting from a very simple stack machine, M1,

designed to show that properties of machines and their

programs can be proved.

2

If the purpose of M1 is to show the students we can prove

properties of machines and programs, I shouldn’t just say M1

is Turing equivalent. I should prove it.

3

Typical M1 Programming Challenge

Write a program that takes two natural numbers in local

variables v[0] and v[1] and halts with 1 on the stack if

v[0] < v[1] and 0 on the stack otherwise.

Difficulty: The only test in the M1 language is “jump if

top-of-stack equals 0”!

Solution: Count both variables down by 1 and stop when one

or the other is 0.

4

Java Bytecode Solution
ILOAD 1 // 0

IFEQ 12 // 1 if v[1]=0, jump to 13

ILOAD 0 // 2

IFEQ 12 // 3 if v[0]=0, jump to 15

ILOAD 0 // 4

ICONST 1 // 5

ISUB // 6

ISTORE 0 // 7 v[0] := v[0] - 1

ILOAD 1 // 8

ICONST 1 // 9

ISUB // 10

ISTORE 1 // 11 v[1] := v[1] - 1

GOTO -12 // 12 jump to 0

ICONST 0 // 13

IRETURN // 14 halt with 0 on stack

ICONST 1 // 15

IRETURN // 16 halt with 1 on stack

JVM pcs are byte addresses but instruction counts are shown here

5

An M1 Programming Solution
’((ILOAD 1) ; 0

(IFEQ 12) ; 1 if v[1]=0, jump to 13

(ILOAD 0) ; 2

(IFEQ 12) ; 3 if v[0]=0, jump to 15

(ILOAD 0) ; 4

(ICONST 1) ; 5

(ISUB) ; 6

(ISTORE 0) ; 7 v[0] := v[0] - 1;

(ILOAD 1) ; 8

(ICONST 1) ; 9

(ISUB) ; 10

(ISTORE 1) ; 11 v[1] := v[1] - 1;

(GOTO -12) ; 12 jump to 0

(ICONST 0) ; 13

(HALT) ; 14 halt with 0 on stack

(ICONST 1) ; 15

(HALT) ; 16 halt with 1 on stack

6

An M1 Programming Solution
’((ILOAD 1) ; 0

(IFEQ 12) ; 1 if v[1]=0, jump to 13

(ILOAD 0) ; 2

(IFEQ 12) ; 3 if v[0]=0, jump to 15

(ILOAD 0) ; 4

(ICONST 1) ; 5

(ISUB) ; 6

(ISTORE 0) ; 7 v[0] := v[0] - 1;

(ILOAD 1) ; 8

(ICONST 1) ; 9

(ISUB) ; 10

(ISTORE 1) ; 11 v[1] := v[1] - 1;

(GOTO -12) ; 12 jump to 0

(ICONST 0) ; 13

(HALT) ; 14 halt with 0 on stack

(ICONST 1) ; 15

(HALT) ; 16 halt with 1 on stack

7

An M1 Programming Solution
’((ILOAD 1) ; 0

(IFEQ 12) ; 1 if v[1]=0, goto false

(ILOAD 0) ; 2

(IFEQ 12) ; 3 if v[0]=0, jump to 15

(ILOAD 0) ; 4

(ICONST 1) ; 5

(ISUB) ; 6

(ISTORE 0) ; 7 v[0] := v[0] - 1;

(ILOAD 1) ; 8

(ICONST 1) ; 9

(ISUB) ; 10

(ISTORE 1) ; 11 v[1] := v[1] - 1;

(GOTO -12) ; 12 jump to 0

(ICONST 0) ; 13

(HALT) ; 14 halt with 0 on stack

(ICONST 1) ; 15

(HALT) ; 16 halt with 1 on stack

8

An M1 Programming Solution
’((ILOAD 1) ; 0

(IFEQ 12) ; 1 if v[1]=0, jump to 13

(ILOAD 0) ; 2

(IFEQ 12) ; 3 if v[0]=0, jump to 15

(ILOAD 0) ; 4

(ICONST 1) ; 5

(ISUB) ; 6

(ISTORE 0) ; 7 v[0] := v[0] - 1;

(ILOAD 1) ; 8

(ICONST 1) ; 9

(ISUB) ; 10

(ISTORE 1) ; 11 v[1] := v[1] - 1;

(GOTO -12) ; 12 jump to 0

(ICONST 0) ; 13

(HALT) ; 14 halt with 0 on stack

(ICONST 1) ; 15

(HALT) ; 16 halt with 1 on stack

9

An M1 Programming Solution
’((ILOAD 1) ; 0

(IFEQ 12) ; 1 if v[1]=0, jump to 13

(ILOAD 0) ; 2

(IFEQ 12) ; 3 if v[0]=0, jump to 15

(ILOAD 0) ; 4

(ICONST 1) ; 5

(ISUB) ; 6

(ISTORE 0) ; 7 v[0] := v[0] - 1;

(ILOAD 1) ; 8

(ICONST 1) ; 9

(ISUB) ; 10

(ISTORE 1) ; 11 v[1] := v[1] - 1;

(GOTO -12) ; 12 jump to 0

(ICONST 0) ; 13

(HALT) ; 14 halt with 0 on stack

(ICONST 1) ; 15

(HALT) ; 16 halt with 1 on stack

10

An M1 Programming Solution
’((ILOAD 1) ; 0

(IFEQ 12) ; 1 if v[1]=0, jump to 13

(ILOAD 0) ; 2

(IFEQ 12) ; 3 if v[0]=0, jump to 15

(ILOAD 0) ; 4

(ICONST 1) ; 5

(ISUB) ; 6

(ISTORE 0) ; 7 v[0] := v[0] - 1;

(ILOAD 1) ; 8

(ICONST 1) ; 9

(ISUB) ; 10

(ISTORE 1) ; 11 v[1] := v[1] - 1;

(GOTO -12) ; 12 jump to 0

(ICONST 0) ; 13

(HALT) ; 14 halt with 0 on stack

(ICONST 1) ; 15

(HALT) ; 16 halt with 1 on stack

11

Outline

• M1

• Turing Machines

• formalized Turing equivalence

• implementation issues

• proof issues

12

M1

M1 provides

• a program counter

• local variables whose values are unbounded rationals

• an unbounded push down stack

• a program which is a finite list of instructions

13

State Transitions

(defun step (s) (do-inst (next-inst s) s))

(defun next-inst (s) (nth (pc s) (program s)))

(defun do-inst (inst s)

(case (op-code inst)

(ILOAD (execute-ILOAD inst s)) ; (ILOAD i): push v[i]

(ICONST (execute-ICONST inst s)); (ICONST i): push i

(IADD (execute-IADD inst s)) ; (IADD): pop twice, add, push

(ISUB (execute-ISUB inst s)) ; (ISUB): pop twice, sub, push

(IMUL (execute-IMUL inst s)) ; (IMUL): pop twice, mul, push

(ISTORE (execute-ISTORE inst s)); (ISTORE i): pop into v[i]

(GOTO (execute-GOTO inst s)) ; (GOTO δ): pc := pc+δ

(IFEQ (execute-IFEQ inst s)) ; (IFEQ δ): pop, if =0, pc := pc+δ

(otherwise s))) ; halt

14

The Semantics of IADD

(defun execute-IADD (inst s) ; inst = (IADD)

(make-state (+ 1 (pc s))

(locals s)

(push (+ (top (pop (stack s)))

(top (stack s)))

(pop (pop (stack s))))

(program s)))

IADD, ISUB and IMUL operate on unbounded rationals.

15

The Semantics of ISTORE

(defun execute-ISTORE (inst s) ; inst = (ISTORE i)

(make-state (+ 1 (pc s))

(update-nth (arg1 inst)

(top (stack s))

(locals s))

(pop (stack s))

(program s)))

16

Running M1

(defun M1 (s n)

(if (zp n)

s

(M1 (step s) (- n 1))))

(defun haltedp (s)

(equal (next-instr s) ’(HALT)))

[alternatively:

(defun haltedp (s)

(equal (step s) s))]

17

s0 = (make-state 0 ; pc

’(5 7) ; locals, v[0] and v[1]

nil ; stack

’((ILOAD 1) ; program[0]

. . . ; . . .

(HALT))) ; program[16]

s70 = (M1 s0 70)

s70 = (make-state 16 ; pc

’(0 2) ; locals, v[0] and v[1]

’(1) ; stack

’((ILOAD 1) ; program[0]

. . . ; . . .

(HALT))) ; program[16]

18

Formalizing Total Correctness

“state α runs to halt at state β, provided γ”

=⇒

“∃n :

α runs in n steps to halt at β, provided γ”

=⇒

“α runs in κ steps to halt at β, provided γ.”

=⇒

(implies γ

(and (equal (M1 α κ) β)

(haltedp β)))

19

“α runs in κ steps to β, provided γ” (for “less than” code)

α :

(make-state 0

(list i j)

nil

’((ILOAD 1) . . . (HALT)))

20

“α runs in κ steps to β, provided γ” (for “less than” code)

κ :

(lessp-clock i j)

(defun lessp-clock (i j)

(if (zp i)

3

(if (zp j)

5

(clk+ 13

(lessp-clock (- i 1) (- j 1))))))

21

“α runs in κ steps to β, provided γ” (for “less than” code)

β :

(make-state (if (< i j) 16 14)

(list (- i (min i j))

(- j (min i j)))

(push (if (< i j) 1 0) nil)

’((ILOAD 1) . . . (HALT)))

22

“α runs in κ steps to β, provided γ” (for “less than” code)

γ :

(and (natp i) (natp j))

23

“α runs in κ steps to β, provided γ” (for “less than” code)

(implies

(and (natp i) (natp j))

(equal (M1 (make-state 0

(list i j)

nil

’((ILOAD 1) . . . (HALT)))

(lessp-clock i j))

(make-state (if (< i j) 16 14)

(list (- i (min i j))

(- j (min i j)))

(push (if (< i j) 1 0) nil)

’((ILOAD 1) . . . (HALT)))))

24

Turing Machines
Turing Machine∗ st tape

((Q0 1 0 Q1) Q0: ([1] 1 1 1 1)

(Q1 0 R Q2) Q1: ([0] 1 1 1 1)

(Q2 1 0 Q3) Q2: (0 [1] 1 1 1)

(Q3 0 R Q4) Q3: (0 [0] 1 1 1)

(Q4 1 R Q4) Q4: (0 0 [1] 1 1)

(Q4 0 R Q5) Q4: (0 0 1 [1] 1)

(Q5 1 R Q5) Q4: (0 0 1 1 [1])

(Q5 0 1 Q6) Q4: (0 0 1 1 1 [0])

(Q6 1 R Q6) Q5: (0 0 1 1 1 0 [0])

(Q6 0 1 Q7) Q6: (0 0 1 1 1 0 [1])

(Q7 1 L Q7) Q6: (0 0 1 1 1 0 1 [0])

(Q7 0 L Q8) . . .

(Q8 1 L Q1) Q7: (0 0 0 0 0 0 1 1 [1] 1 1 1 1 1)

(Q1 1 L Q1)) Q7: (0 0 0 0 0 0 1 [1] 1 1 1 1 1 1)

Q7: (0 0 0 0 0 0 [1] 1 1 1 1 1 1 1)

Q7: (0 0 0 0 0 [0] 1 1 1 1 1 1 1 1)

Q8: (0 0 0 0 [0] 0 1 1 1 1 1 1 1 1)
∗
from A Theory of recursive functions and effective computability, Hartley Rogers, McGraw-Hill, 1967

25

Note

Rogers shows that it is sufficient to consider only initial (and

final) tapes with a finite number of 1s on them.

Like Rogers, we represent a tape as two lists of 0s and 1s,

representing the left and right halves of the tape, with the

“read/write head” on the first symbol of the right half tape.

26

ACL2 Formalization of Turing Machines

(defun tmi (st tape tm n)

(declare (xargs :measure (nfix n)))

(cond ((zp n) nil)

((instr st (current-sym tape) tm)

(tmi (nth 3 (instr st (current-sym tape) tm))

(new-tape (nth 2 (instr st (current-sym tape) tm))

tape)

tm

(- n 1)))

(t tape)))

(show-tape *example-tape*)

([1] 1 1 1 1)

(show-tape (tmi ’Q0 *example-tape* *rogers-tm* 78))

(0 0 0 0 [0] 0 1 1 1 1 1 1 1 1)

27

ACL2 Formalization of Turing Machines

(defun tmi (st tape tm n)

(declare (xargs :measure (nfix n)))

(cond ((zp n) nil)

((instr st (current-sym tape) tm)

(tmi (nth 3 (instr st (current-sym tape) tm))

(new-tape (nth 2 (instr st (current-sym tape) tm))

tape)

tm

(- n 1)))

(t tape)))

But n is just an artifact of ACL2’s requirement that all

functions be terminating.

28

Given a Turing machine program tm, initial state st, and tape

tape,

“the Turing machine program halts”

means

∃ n : (tmi st tape tm n) 6= nil

“the Turing machine program runs forever”

means

∀ n : (tmi st tape tm n) = nil

29

The Questions

Can M1 compute anything a Turing machine can compute?

Can we implement a Turing machine interpreter on M1?

Answers: Given unbounded integers, variables, simple

arithmetic, jump-if-zero, and iteration? Sure!

But how many times have you seen it proved mechanically?

In fact, how many times have you even seen it stated formally?

What do we prove?

30

Turing Completeness v. Equivalence

In 1984, Boyer and I published a paper on “A Mechanical

Proof of the Turing Completeness of Pure Lisp.” It ought to

have been titled “A Mechanical Proof of the Turing

Equivalence of Pure Lisp.”

A computational paradigm is Turing equivalent if it can

compute anything a Turing machine can.

A computation is Turing complete if it can only be computed

by a Turing-equivalent computing system; i.e., if a device can

carry out a Turing complete computation, it can compute any

other Turing complete computation.

I’m not sure if this terminology was widely accepted in 1984.

31

“Turing Equivalence”

For any given Turing machine initial state, tape, and machine

description, there exists an M1 state such that

(a) if the Turing machine runs forever, then M1 runs forever,

and

(b) if the Turing machine halts, then M1 halts with the

“same” tape.

32

“Turing Equivalence”

For any given Turing machine initial state, tape, and machine

description, there exists an M1 state such that

(a) if M1 halts, then the Turing machine halts,

and

(b) if the Turing machine halts, then M1 halts with the

“same” tape.

33

“Turing Equivalence”

For any given Turing machine initial state, tape, and machine

description, there exists an M1 state such that

(a) if M1 halts, then the Turing machine halts,

and

(b) if the Turing machine halts, then M1 halts with the

“same” tape.

This must be formalized carefully to make sure M1 does the

computation! (It would be cheating to map a given Turing

machine configuration to the “final” M1 state with the right

answer already in it.)

34

Outline

• M1

• Turing Machines

• formalized Turing equivalence

• implementation issues

• proof issues

35

Implementation Issues

TMI operates on symbolic data and lists:

• a state name st (an ACL2 symbol),

• a tape (a cons of two half-tapes: lists of 1s and 0s)

• a Turing machine description (a list of 4-tuples

(qin bit op qout))

M1 only operates on numbers.

36

Basic Idea

Encode initial state, Turing machine description, and tape as

numbers,

put those numbers onto the M1 stack, and

invoke a fixed program Ψ to interpret the Turing machine

description.

37

Turing Machines
st tape tm

Q0 ([1] 1 1 1 1) ((Q0 1 0 Q1)

(Q1 0 R Q2)

(Q2 1 0 Q3)

(Q3 0 R Q4)

(Q4 1 R Q4)

(Q4 0 R Q5)

(Q5 1 R Q5)

(Q5 0 1 Q6)

(Q6 1 R Q6)

(Q6 0 1 Q7)

(Q7 1 L Q7)

(Q7 0 L Q8)

(Q8 1 L Q1)

(Q1 1 L Q1))

38

Turing Machines – state numbers
st tape tm

0 ([1] 1 1 1 1) ((0 1 0 1)

(1 0 3 2)

(2 1 0 3)

(3 0 3 4)

(4 1 3 4)

(4 0 3 5)

(5 1 3 5)

(5 0 1 6)

(6 1 3 6)

(6 0 1 7)

(7 1 2 7)

(7 0 2 8)

(8 1 2 1)

(1 1 2 1))

39

Turing Machines – cells as numbers
st tape tm

0 ([1] 1 1 1 1) ((0 1 0 1) ⇒ 0001 000 1 0000

(1 0 3 2) ⇒ 0010 011 0 0001

(2 1 0 3) ⇒ 0011 000 1 0010

(3 0 3 4) . . .

(4 1 3 4)

(4 0 3 5)

(5 1 3 5)

(5 0 1 6)

(6 1 3 6)

(6 0 1 7)

(7 1 2 7)

(7 0 2 8)

(8 1 2 1)

(1 1 2 1))⇒ 0001 010 1 0001

40

Turing Machines – packed cells
st tape tm

0 ([1] 1 1 1 1) ((0 1 0 1) ⇒ 0001 000 1 0000

(1 0 3 2) ⇒ 0010 011 0 0001

(2 1 0 3) ⇒ 0011 000 1 0010

(3 0 3 4) . . .

(4 1 3 4)

(4 0 3 5)

(5 1 3 5)

(5 0 1 6)

(6 1 3 6)

(6 0 1 7)

(7 1 2 7)

(7 0 2 8)

(8 1 2 1)

(1 1 2 1))⇒ 0001 010 1 0001

000010000000 000101010001 . . . 001001100001 000100010000

41

Turing Machines – packed cells
st tape tm

0 ([1] 1 1 1 1) ((0 1 0 1) ⇒ 0001 000 1 0000

(1 0 3 2) ⇒ 0010 011 0 0001

(2 1 0 3) ⇒ 0011 000 1 0010

(3 0 3 4) . . .

(4 1 3 4)

(4 0 3 5)

(5 1 3 5)

(5 0 1 6)

(6 1 3 6)

(6 0 1 7)

(7 1 2 7)

(7 0 2 8)

(8 1 2 1)

(1 1 2 1))⇒ 0001 010 1 0001

000010000000 000101010001 . . . 001001100001 000100010000

=

47921276213291088842438974929274042051802613691060496

42

Turing Machines – packed cells
st tape tm

0 ([1] 1 1 1 1) ((0 1 0 1) ⇒ 0001 000 1 0000

(1 0 3 2) ⇒ 0010 011 0 0001

(2 1 0 3) ⇒ 0011 000 1 0010

(3 0 3 4) . . .

(4 1 3 4)

(4 0 3 5)

(5 1 3 5)

(5 0 1 6)

(6 1 3 6)

(6 0 1 7)

(7 1 2 7)

(7 0 2 8)

(8 1 2 1)

(1 1 2 1))⇒ 0001 010 1 0001

000010000000 000101010001 . . . 001001100001 000100010000

↑

‘‘nnil’’

43

Notational Conventions

• tm: a Turing machine description

• st: initial state of tm

• tape: initial tape

• tm′: packed cell representation of tm

• st′: numeric encoding of st

• tape′: binary encoding of tape

• pos′: position of read head in tape

44

• w: bit width of state component of cells

• nnil: encoding of “NIL” used in packed cells

• Ψ: M1 bytecode program

• s0: (make-state 0

’(0 0 0 0 0 0 0 0 0 0 0 0 0)

(push* nnil w tm′ pos′ tape′ st′ nil)

Ψ)

All of the encodings mentioned above are constructive

(computable) functions defined in ACL2.

45

Theorem A

Let i be a natural number. If (M1 s0 i) is halted, then

there exists a j such that (tmi st tape tm j) is halted.

46

Theorem A

Let i be a natural number. If (M1 s0 i) is halted, then

(tmi st tape tm (find-j st tape tm i)) is halted.

47

Theorem A

(with-conventions

(implies (natp i)

(let ((s f (M1 s 0 i)))

(implies

(haltedp s f)

(tmi st tape tm (find-j st tape tm i))))))

48

Theorem A
(let*

((map (renaming-map st tm))

(w (max-width tm map))

(nnil (nnil w))

(st′ (ncode-st st map))

(tm′ (ncode-tm tm map w))

(tape′ (ncode-tape tape))

(pos′ (ncode-pos tape))

(s 0 (make-state 0 ’(0 0 0 0 0 0 0 0 0 0 0 0 0)

(push* nnil w tm′

pos′ tape′ st′ nil)

(psi))))

(implies (and (symbolp st)

(tapep tape)

(turing-machinep tm))

(implies (natp i)

(let ((s f (M1 s 0 i)))

(implies (haltedp s f)

(tmi st tape tm (find-j st tape tm i)))))))

49

Theorem A

(with-conventions

(implies (natp i)

(let ((s f (M1 s 0 i)))

(implies

(haltedp s f)

(tmi st tape tm (find-j st tape tm i)))))

50

Theorem B

Let n be a natural number. If (tmi st tape tm n) is halted

with tape τ , then there exists a k such that (M1 s0 k) is

halted and its final tape and position decode to τ .

51

Theorem B

Let n be a natural number. If (tmi st tape tm n) is halted

with tape τ , then (M1 s0 (find-k st tape tm n)) is

halted and its final tape and position decode to τ .

52

Theorem B

(with-conventions

(implies (and (natp n)

(tmi st tape tm n))

(let ((s f (M1 s 0 (find-k st tape tm n))))

(and (haltedp s f)

(equal (decode-tape-and-pos

(top (pop (stack s f)))

(top (stack s f)))

(tmi st tape tm n))))))

53

Obvious Question

Question: Why not just compile the tm to M1 code?

Answer: Wait until we discuss program proofs.

54

M1 Programming Issues

We must write M1 programs for the following concepts:

• lessp – less than on naturals

• mod – mod on naturals

• floor – floor on naturals

• log2 – log base 2

• expt – exponentiation

• nst-in, nsym, nop, nst-out, ncar, ncdr – subroutines

used in reading the cells of a Turing machine description

55

• current-symn – read the current position on the tape

• ninstr1 – interpret the current Turing machine state

• new-tape2 – write to the tape and shift position

• tmi3 – Turing machine interpreter

• main – load data and invoke tmi3

56

A Verifying Compiler

I wrote a verifying compiler that let me code all this in a

Lisp-like language and compile it to M1 bytecode, Ψ

The compiler generated clock functions characterizing the

runtime of each subroutine

The compiler generated and proved a correctness theorem for

each subroutine with respect to its clock function and Lisp

code (see below)

57

Implementation Notes

The first pass of the compiler generates an assembly language

and symbol table and the second pass expands the assembly

language to M1 and fills in jump distances to subroutines and

labels

Since M1 does not provide subroutine call, my compiler

implements an X86-like discipline to provide CALL and RETURN

via the stack

Since M1 does not support the JVM’s JSR (which jumps to a

pc found on the stack), my compiler keeps track every call

location and implements RETURN by compiling it to a “big

switch” sequence of tests and jumps

58

Example
(defsys :ld-flg nil

:modules

((lessp :formals (x y)

:input (and (natp x)

(natp y))

:output (if (< x y) 1 0)

:code (ifeq y

0

(ifeq x

1

(lessp (- x 1) (- y 1)))))

(mod :formals (x y)

:input (and (natp x)

(natp y)

(not (equal y 0)))

:output (mod x y)

:code (ifeq (lessp x y)

(mod (- x y) y)

x))

59

. . .

(nst-out :formals (cell w)

:input (and (natp cell) (natp w))

:output (nst-out cell w)

:code (mod (floor cell (expt 2 (+ 4 w) 1) 0)

(expt 2 w 1)))

. . .

60

. . .

(main :formals (st tape pos tm w nnil)

:input (and (natp st)

(natp tape)

(natp pos)

(natp tm)

(natp w)

(equal nnil (nnil w))

(< st (expt 2 w)))

:output (tmi3 st tape pos tm w n)

:output-arity 4

:code (tmi3 st tape pos tm w nnil) ; Numeric version of tmi

:ghost-formals (n)

:ghost-base-value (mv 0 st tape pos))))

61

Final System

(defun Psi () ; Ψ = 896 lines of M1 code

’((ICONST 2)

(GOTO 843)

(HALT)

(ISTORE 12)

(ISTORE 7)

(ISTORE 6)

(ILOAD 0)

(ILOAD 1)

(ILOAD 12)

(ILOAD 6)

(ILOAD 7)

(ISTORE 1)

(ISTORE 0)

(ILOAD 1)

(IFEQ 14)

(ILOAD 0)

(IFEQ 10)

62

(ILOAD 0)

(ICONST 1)

(ISUB)

(ILOAD 1)

(ICONST 1)

. . .

(ILOAD 6)

(ILOAD 7)

(ILOAD 8)

(ILOAD 9)

(GOTO -891)

(GOTO 0)

(GOTO 0)))

63

Mod’s Correctness

The input to the compiler for MOD is:

(MOD :formals (x y)

:input (and (natp x)

(natp y)

(not (equal y 0)))

:output (mod x y)

:code (ifeq (lessp x y)

(mod (- x y) y)

x))

64

After generating M1 code for MOD, the compiler defines – in

the logic – the “algorithm” !MOD for the generated code:

(DEFUN !MOD (X Y)

(IF (AND (NATP X)

(NATP Y)

(NOT (EQUAL Y 0)))

(IF (EQUAL (!LESSP X Y) 0)

(!MOD (- X Y) Y)

X)

NIL))

65

The compiler defines a “clock” function, first for the loop:

(DEFUN MOD-LOOP-CLOCK (X Y)

(IF (AND (NATP X)

(NATP Y)

(NOT (EQUAL Y 0)))

(IF (EQUAL (!LESSP X Y) 0)

(clk+ 4

(LESSP-CLOCK ’(0 1) X Y)

8

(MOD-LOOP-CLOCK (- X Y) Y))

(clk+ 4

(LESSP-CLOCK ’(0 1) X Y)

3))

0))

66

and then for a call of MOD from any ret-pc:

(DEFUN MOD-CLOCK (RET-PC X Y)

(clk+ 10

(MOD-LOOP-CLOCK X Y)

5

(EXIT-CLOCK ’MOD RET-PC)))

67

The compiler generates a theorem that establishes that

running the code for the right number of steps produces a

state described in terms of the code’s algorithm function. (It

does that first for the loop, then for the call; here is the

theorem for a call.)

(DEFTHM MOD-IS-!MOD

(IMPLIES

(AND (READY-AT *MOD* (LOCALS S) 3 S)

(MEMBER (CDR (ASSOC CALL-ID *ID-TO-LABEL-TABLE*)

(CDR (ASSOC ’MOD *SWITCH-TABLE*)))

(EQUAL (TOP (STACK S))

(FINAL-PC ’MOD CALL-ID))

. . .

68

(IMPLIES

(AND . . .

(EQUAL Y (TOP (POP (STACK S))))

(EQUAL X (TOP (POP (POP (STACK S)))))

(AND (NATP X)

(NATP Y)

(NOT (EQUAL Y 0))))

(EQUAL (M1 S (MOD-CLOCK CALL-ID X Y))

β))

69

β :

(MAKE-STATE

(TOP (STACK S))

(UPDATE-NTH* 0

(LIST (NTH 0 (LOCALS S))

(NTH 1 (LOCALS S))

(NTH 2 (LOCALS S))

(NTH 3 (LOCALS S))

(NTH 4 (LOCALS S))

(NTH 5 (LOCALS S)))

(MOD-FINAL-LOCALS CALL-ID X Y S))

(PUSH (!MOD X Y) (POPN 3 (STACK S)))

(PSI))

70

Then it generates the theorem that the algorithm function is

equal to the specification expression provided to the compiler.

(DEFTHM !MOD-SPEC

(IMPLIES (AND (NATP X)

(NATP Y)

(NOT (EQUAL Y 0)))

(EQUAL (!MOD X Y) (MOD X Y))))

71

The compiler generates code for the main program, which

pops arguments off the M1 stack and calls the (alleged)

Turing machine interpreter

The compiler generates clock functions and theorems for every

module, including main, ultimately producing a clock,

psi-clock, and a Correctness Theorem for Ψ

72

Handling Partial Programs

The M1 code for tmi3 and main may not halt.

The tmi3 specification, (!tmi3 ... n), has a ghost

variable, n, that the generated code does not.

The tmi3 theorem proved by the compiler compares the

specification to running the M1 code for (tmi3-clock ...n)

steps:

(i) if the specification halts, then M1 halts with same answer

(ii) if the specification does not halt, then M1 is at its loop

with same data !tmi3 has when it times out.

73

Handling Partial Programs

The M1 code for tmi3 and main may not halt.

The specification, (!tmi3 ... n), has a ghost variable, n,

that the generated code does not.

The tmi3 theorem proved by the compiler compares the

specification to running the M1 code for (tmi3-clock ...n)

steps:

(i) if the specification halts, then M1 halts with same answer

(ii) if the specification does not halt, then M1 is at its loop

with same data !tmi3 has when it times out. This state is

obviously not halted!

74

Summary of Code

The M1 Turing machine interpreter system uses 13 local

variables, 16 subroutines, and 896 M1 instructions.

The compiler generates 329 events [9 are provided as “hints”

by the user] to prove that its code corresponds to the high

level functions compiled.

type commands of which [n] are user supplied

DEFCONST 110

DEFUN 94

DEFTHM 88 [7]

IN-THEORY 37 [2]

The compiler fails unless all theorems are proved.

75

Obvious Question

Idea: Compile tm as an M1 program instead of interpretting a

big numeric constant.

Problem: Instead of verifying a fixed program Ψ I would have

to verify the compiler.

(This is possible but would have been a little harder.)

76

Some Proof Related Issues

A little more work is needed to relate the compiler’s theorems

to our Theorems A and B:

We compile a “numeric” representation of Turing machines,

tmi3, but Theorems A and B talk about tmi

Our compiler theorem introduces a verified clock function that

maps from Turing machine steps to M1 steps but we also

need one that maps from M1 steps to Turing machine steps

77

Reductions of TMI

Tmi uses lists but M1 deals only with numeric data

We proved a sequence of reductions:

tmi

↓

tmi1 – introduce state numbers

↓

tmi2 – introduce packed cell representation of tm

↓

tmi3 – binary number and position for tape

=

the “tmi” we compiled

78

The Simulation Theorem

Assume the conventions on st, tape, tm, st′, etc.

Define

(find-k st tape tm n)

=(psi-clock st′ tape′ tm′ . . . n).

Compare the result of running tmi n steps to the result of

running M1 on s0 for (find-k st tape tm n) steps:

(i) tmi is halted ↔ M1 is halted

(ii) tmi halted → M1 tape is the “same” as tmi tape

Proof: This follows from our tmi-to-tmi3 Reduction Theorem

and the compiler’s Ψ Correctness Theorem. Q.E.D.

79

Theorem B

Let n be a natural number. If (tmi st tape tm n) is halted

with tape τ , then (M1 s0 (find-k st tape tm n)) is

halted and its final tape and position decode to τ .

Proof: See the Simulation Theorem. Q.E.D.

80

Theorem A – Still Work To Do!

But Theorem A requires: if M1 halts in i steps then tmi halts

in (find-j st tape tm i) steps.

How do we define function find-j?

81

Theorem A – Still Work To Do!

But Theorem A requires: if M1 halts in i steps then tmi halts

in (find-j st tape tm i) steps.

How do we define function find-j?

Aide Memoire:

We have find-k and we want find-j.

If tmi halts in n steps, M1 halts in (find-k . . . n) steps.

If M1 halts in i steps, tmi halts in (find-j . . . i) steps.

82

Observation: Simulation Theorem

Compare the result of running tmi n steps to the result of

running M1 on s0 for (find-k st tape tm n) steps:

(i) tmi is halted ↔ M1 is halted

(ii) tmi halted → M1 tape is the “same” as tmi tape

83

Observation: Simulation Theorem

Compare the result of running tmi n steps to the result of

running M1 on s0 for (find-k st tape tm n) steps:

(i) tmi is halted at n ↔ M1 is halted at (find-k . . . n)

(ii) tmi halted → M1 tape is the “same” as tmi tape

84

Observation: Find-k is Monotonic

If tmi has not halted after n steps, then

(find-k st tape tm n)

<

(find-k st tape tm (+ 1 n))

Note: This is actually an interesting-to-prove “self-evident”

theorem whose proof involved the introduction of the notion

of “trace” into my script.

85

Observation: Halted Means Halted!

If M1 is halted at i steps and c ≥ i, then M1 is halted at c

steps.

86

Defining Find-j

In Theorem A, M1 is known to halt after i steps (and thus M1

is halted at any c ≥ i)

To find a j for which tmi halts:

Try successively larger j starting from 0:

If tmi halts at j, return j. (Obviously a good answer.)

If (find-k st tape tm j) ≥ i, return j. (See below.)

Else, keep searching upwards.

87

Defining Find-j

In Theorem A, M1 is known to halt after i steps (and thus M1

is halted at any c ≥ i)

To find a j for which tmi halts:

Try successively larger j starting from 0:

If tmi halts at j, return j. (Obviously a good answer.)

If (find-k st tape tm j) ≥ i, return j. (See below.)

Else, keep searching.

This search terminates because of find-k Monotonicity.

88

Defining Find-j

In Theorem A, M1 is known to halt after i steps (and thus M1

is halted at any c ≥ i)

To find a j for which tmi halts:

Try successively larger j starting from 0:

If tmi halts at j, return j. (Obviously a good answer.)

If (find-k st tape tm j) ≥ i, return j. (See below.)

Else, keep searching.

Exiting on the second test contradicts the Simulation

Theorem: M1 is halted at (find-k . . . j) ≥ i and thus tmi is

halted at j.

89

Proof Discovery

book defun defthm

defsys-utilities 4 20

defsys-v2 101 22

tmi-reductions 58 92

implementation 3+defsys 11

theorems-a-and-b 14 37

180 182

The proof takes about 6 minutes on my laptop.

I spent about 10 days working on the first version and have

cleaned it up twice since then.

90

Using M1 to Emulate Turing Machines

We can run M1.

Given our constructive clocks, we can determine, for any

Turing machine run, how many M1 instructions it takes.

Consider *rogers-tm* on the tape ([1] 1 1 1 1), which

takes 78 steps to compute the tape

(0 0 0 0 [0] 0 1 1 1 1 1 1 1 1)

M1 requires

(find-k ’Q0 *example-tape* *rogers-tm* 78) steps

So how many steps is that?

91

(find-k ’Q0 *example-tape* *rogers-tm* 78)

=

291,202,253,588,734,484,219,274,297,505,568,945,357,129,888,612,375,663,883

≈ 1056 steps!

92

(find-k ’Q0 *example-tape* *rogers-tm* 78)

=

291,202,253,588,734,484,219,274,297,505,568,945,357,129,888,612,375,663,883

≈ 1056 steps!

This is because M1 is using repeated subtractions of 1 and 2

to recover bits from large (e.g., 50 digit) numbers encoding

tm.

It would be much faster if M1 had built-in binary arithmetic

(IFLT, RSH, MOD)

It would be a little faster if it had JSR.

93

Compiling tm to M1 would also produce a faster emulator

(but we would still need log-time operations on the tape).

94

Summary

This is only the second mechanically checked Turing

equivalence proof I know.

This is the first one for a von Neuman machine model.

It requires some coding skills and layered abstractions.

The 896 instruction M1 program is the largest M1 program

I’ve ever verified.

This project demonstrates that we can reason about

computations that are impractical to carry out!

This project shows that clock functions facilitate certain kinds

of proofs.

95

