File: fft-omega.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (270 lines) | stat: -rw-r--r-- 8,760 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#|

This is in an ACL2 "book" with definitions and theorems about an abstract
correctness proof of the Fast Fourier Transform.  The proof verified here comes
from Misra's 1994 paper on powerlists.

To certify this book, first define the POWERLISTS package, then execute an
appropriate certify-book command.  Something like the following will work:

|#

#|;

    (defpkg "POWERLISTS"
      (union-eq *common-lisp-symbols-from-main-lisp-package*
		*acl2-exports*))

    (certify-book "eval-poly" 1)

|#

(in-package "POWERLISTS")

(include-book "eval-poly")

;; This first theorem shows how to evaluate a polynomial at a vector with the
;; special property v = < u | -u >.  This special property is the heart of the
;; proof as given in Misra's 1994 powerlists paper.

(defthm eval-poly-u-unary---u
  (implies (powerlist-p x)
	   (equal (eval-poly x (p-tie u (p-unary-- u)))
		  (p-tie (p-+ (eval-poly (p-unzip-l x)
					 (p-* u u))
			      (p-* u
				   (eval-poly
				    (p-unzip-r x)
				    (p-* u u))))
			 (p-- (eval-poly (p-unzip-l x)
					 (p-* u u))
			      (p-* u
				   (eval-poly
				    (p-unzip-r x)
				    (p-* u u)))))))
  :hints (;;("Goal" :expand (eval-poly x (p-tie u (p-unary-- u))))
	  ("Goal'4'"
	   :use (:instance p-+-p-unary--
			   (x (eval-poly pul (p-* u u)))
			   (y (p-* u (eval-poly pur (p-* u u)))))
	   :in-theory (disable p-+-p-unary--))))

;; The most important step is to introduce the constrained function p-omega
;; which will have the property (p-omega n) = < u | -u > used in the previous
;; lemma.  P-omega is actually a family of vectors.  In particular, (p-omega n)
;; is a numeric vector of length 2^n.  Because we do not have a square root
;; function, we constrain two functions, p-omega and p-omega-sqrt, with the
;; needed properties.

(encapsulate
 ((p-omega (n) t)
  (p-omega-sqrt (n) t))

 ;; This definition of p-omega is needed only to provide a witness function to
 ;; the constrains about p-omega.  It simply defines p-omega as the function
 ;; that generates 2^n zeros.

 (local
  (defun p-omega (n)
    (if (zp n)
	0
      (p-tie (p-omega (1- n)) (p-omega (1- n))))))
 (local (in-theory (disable (p-omega))))

 ;; Since p-omega has only zeros, its square root is simply p-omega itself.

 (local
  (defun p-omega-sqrt (n)
    (p-omega n)))
 (local (in-theory (disable (p-omega-sqrt))))

 ;; The following theorem trivializes the constrains of p-omega, namely that
 ;; the witness for p-omega satisfies p-omega = -p-omega.  This is trivially
 ;; true, since the witness p-omega is the zero vector.  This is clearly a
 ;; _local_ theorem, i.e., one which is not expected to be true of the
 ;; constrained p_omega.

 (local
  (defthm p-unary---omega
    (equal (p-unary-- (p-omega n))
	   (p-omega n))))

 ;; The first constraint on p-omega is that the base case returns a number.

 (defthm numberp-omega-0
   (acl2-numberp (p-omega 0))
   :rule-classes (:type-prescription :rewrite))

 ;; Another constraint on p-omega is that for n positive, (p-omega n) equals
 ;; < (p-omega-sqrt n) | -(p-omega-sqrt n) >.

 (defthm p-omega->tie-minus
   (implies (not (zp n))
	    (equal (p-omega n)
		   (p-tie (p-omega-sqrt (1- n))
			  (p-unary--
			   (p-omega-sqrt (1- n))))))
   :rule-classes nil)

 ;; The last constraint merely asserts that p-omega-sqrt is indeed the square
 ;; root of p-omega.

 (defthm p-omega-sqrt**2
       (equal (p-* (p-omega-sqrt n)
                   (p-omega-sqrt n))
              (p-omega n)))
 )

;; We have already shown how to expand (eval-poly x v) for a vector v with the
;; form v = < u | -u >.  Also, we know (p-omega n) = < u | -u > for some u,
;; specifically for u = (p-omega-sqrt (1- n)).  We combine these two theorems
;; to give the expansion of (eval-poly x (p-omega n)).

;; First, we prove a useful lemma that simply instantiates the u in the theorem
;; about < u | -u > with (p-omega-sqrt (1- n)).

(defthm eval-poly-omega-n-aux
  (implies (powerlist-p x)
	   (equal (eval-poly x
			     (p-tie (p-omega-sqrt (1- n))
				    (p-unary-- (p-omega-sqrt (1- n)))))
		  (p-tie (p-+ (eval-poly (p-unzip-l x) (p-omega (1- n)))
			      (p-* (p-omega-sqrt (1- n))
				   (eval-poly (p-unzip-r x) (p-omega (1- n)))))
			 (p-- (eval-poly (p-unzip-l x) (p-omega (1- n)))
			      (p-* (p-omega-sqrt (1- n))
				   (eval-poly (p-unzip-r x)
					      (p-omega (1- n))))))))
  :rule-classes nil)

;; Now, we can prove the actual theorem about (eval-poly x (p-omega n)).

(defthm eval-poly-omega-n
  (implies (and (powerlist-p x)
		(not (zp n)))
	   (let ((n1 (1- n)))
	     (equal (eval-poly x (p-omega n))
		    (p-tie (p-+ (eval-poly (p-unzip-l x)
					   (p-omega n1))
				(p-* (p-omega-sqrt n1)
				     (eval-poly
				      (p-unzip-r x)
				      (p-omega n1))))
			   (p-- (eval-poly (p-unzip-l x)
					   (p-omega n1))
				(p-* (p-omega-sqrt n1)
				     (eval-poly
				      (p-unzip-r x)
				      (p-omega n1))))))))
  :hints (("Goal"
	   :use (eval-poly-omega-n-aux p-omega->tie-minus)
	   :hands-off (eval-poly p-omega p-omega-sqrt)))
  :rule-classes nil)

(defun p-depth (x)
  "The depth of a powerlist is the number of ties in its left branch."
  (if (powerlist-p x)
      (1+ (p-depth (p-untie-l x)))
    0))
(in-theory (disable (p-depth)))

;; We have to prove a silly theorem about depth.  Namely, if a powerlist is non
;; scalar, then its depth is non-zero.

(defthm powerlist->non-zero-depth
  (implies (powerlist-p x)
	   (not (zp (p-depth x)))))

;; Now that we know that for a powerlist-p x its p-depth is non-zero, we can
;; remove the hypothesis that n > 0 in (p-omega n) since we are interested only
;; in (p-omega (p-depth x)) anyway.

(defthm eval-poly-omega-depth
  (let* ((n (p-depth x))
	 (n1 (1- n)))
    (implies (powerlist-p x)
	     (equal (eval-poly x (p-omega n))
		    (p-tie (p-+ (eval-poly (p-unzip-l x)
					   (p-omega n1))
				(p-* (p-omega-sqrt n1)
				     (eval-poly
				      (p-unzip-r x)
				      (p-omega n1))))
			   (p-- (eval-poly (p-unzip-l x)
					   (p-omega n1))
				(p-* (p-omega-sqrt n1)
				     (eval-poly
				      (p-unzip-r x)
				      (p-omega n1))))))))
  :hints (("Goal"
	   :use (:instance eval-poly-omega-n (n (p-depth x)))))
  :rule-classes nil)

(defun p-ft-omega (x)
  "The Fourier Transform of a vector x is defined as the value of evaluating
  the vector x as a polynomial on the vector w = (p-omega (p-depth x)).  The
  vector w will have as many elements as x.  Moreover, it is constrained to
  have special properties.  See the documentation for p-omega."
  (eval-poly x (p-omega (p-depth x))))
(in-theory (disable (p-ft-omega)))

;; We defined p-depth in terms of tie, but we are also interested in recursing
;; in terms of zip.  Thus, we have to prove a theorem about the depth of
;; unzipped powerlists.

(defthm p-depth-unzip
      (implies (and (powerlist-p x)
                    (p-regular-p x))
               (and (equal (p-depth (p-unzip-l x))
                           (1- (p-depth x)))
                    (equal (p-depth (p-unzip-r x))
                           (1- (p-depth x))))))

;; The theorem eval-poly-omega-depth gives us a good characterization of
;; (eval-poly x (p-omega (p-depth x))).  As it turns out, this is precisely the
;; definition of (p-ft-omega x), so we can rewrite eval-poly-omega-depth in
;; terms of p-ft-omega.  This gives the following useful lemma.

(defthm ft-omega-lemma
  (implies (and (powerlist-p x)
		(p-regular-p x))
	   (equal (p-ft-omega x)
		  (p-tie (p-+ (p-ft-omega (p-unzip-l x))
			      (p-* (p-omega-sqrt
				    (1- (p-depth x)))
				   (p-ft-omega
				    (p-unzip-r x))))
			 (p-- (p-ft-omega (p-unzip-l x))
			      (p-* (p-omega-sqrt
				    (1- (p-depth x)))
				   (p-ft-omega
				    (p-unzip-r x)))))))
  :hints (("Goal" :in-theory (disable eval-poly-lemma))
; Matt K. v7-1 mod for avoiding "Goal'", 2/13/2015: "Goal''" changed to "Goal'".
	  ("Goal'" :use eval-poly-omega-depth))
  :rule-classes nil)

(defun p-fft-omega (x)
  "The Fast Fourier Transform is a fast way of computing the Fourier Transform."
  (if (powerlist-p  x)
      (p-tie (p-+ (p-fft-omega (p-unzip-l x))
		  (p-* (p-omega-sqrt (1- (p-depth x)))
		       (p-fft-omega (p-unzip-r x))))
	     (p-- (p-fft-omega (p-unzip-l x))
		  (p-* (p-omega-sqrt (1- (p-depth x)))
		       (p-fft-omega (p-unzip-r x)))))
    (fix x)))
(in-theory (disable (p-fft-omega)))

;; We can now prove the main theorem, namely that the Fast Fourier Transform
;; returns the same result as the Fourier Transform.  This theorem is a simple
;; corollary of ft-omega-lemma.

(defthm fft-omega->ft-omega
  (implies (p-regular-p x)
	   (equal (p-fft-omega x)
		  (p-ft-omega x)))
  :hints (("Subgoal *1/4"
	   :use ft-omega-lemma
	   :hands-off (eval-poly p-omega p-omega-sqrt p-+ p--))))