| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 
 | (in-package "ACL2")
(local (include-book "arithmetic/idiv" :dir :system))
(local (include-book "arithmetic/realp" :dir :system))
(include-book "nsa")
; Added by Matt K. for v2-7.
(add-match-free-override :once t)
(set-match-free-default :once)
(encapsulate
 ((f1 (x) t))
 ;; Our witness continuous function is the identity function.
 (local (defun f1 (x) x))
 ;; The function returns standard values for standard arguments.
 (defthm f1-standard
   (implies (standard-numberp x)
	    (standard-numberp (f1 x)))
   :rule-classes (:rewrite :type-prescription))
 ;; For real arguments, the function returns real values.
 (defthm f1-real
   (implies (realp x)
	    (realp (f1 x)))
   :rule-classes (:rewrite :type-prescription))
 ;; If x is a standard real and y is a real close to x, then f1(x)
 ;; is close to f1(y).
 (defthm f1-continuous
   (implies (and (standard-numberp x)
		 (realp x)
		 (i-close x y)
		 (realp y))
	    (i-close (f1 x) (f1 y))))
 )
(encapsulate
 ((f2 (x) t))
 ;; Our witness continuous function is the identity function.
 (local (defun f2 (x) x))
 ;; The function returns standard values for standard arguments.
 (defthm f2-standard
   (implies (standard-numberp x)
	    (standard-numberp (f2 x)))
   :rule-classes (:rewrite :type-prescription))
 ;; For real arguments, the function returns real values.
 (defthm f2-real
   (implies (realp x)
	    (realp (f2 x)))
   :rule-classes (:rewrite :type-prescription))
 ;; If x is a standard real and y is a real close to x, then f2(x)
 ;; is close to f2(y).
 (defthm f2-continuous
   (implies (and (standard-numberp x)
		 (realp x)
		 (i-close x y)
		 (realp y))
	    (i-close (f2 x) (f2 y))))
 )
(defun f1*f2 (x)
  (* (f1 x) (f2 x)))
(defthm close-times
  (implies (and (i-close x1 x2)
		(i-limited y))
	   (i-close (* x1 y) (* x2 y)))
  :hints (("Goal" :in-theory (enable i-close))
	  ("Goal''" :use ((:instance small*limited->small
				     (x (- x1 x2))
				     (y y)))
	   :in-theory (disable small*limited->small))))
(defthm close-times-2
  (implies (and (i-close x1 x2)
		(i-close y1 y2)
		(i-limited x1)
		(i-limited y1))
	   (i-close (* x1 y1) (* x2 y2)))
  :hints (("Goal"
	   :use ((:instance close-times (x1 x1) (x2 x2) (y y1))
		 (:instance close-times (x1 y1) (x2 y2) (y x2))
		 (:instance i-close-transitive
			    (x (* x1 y1))
			    (y (* x2 y1))
			    (z (* x2 y2)))
		 (:instance i-close-limited
			    (x x1)
			    (y x2)))
	   :in-theory (disable close-times i-close-transitive i-close-limited))))
(defthm f1*f2-continuous
  (implies (and (standard-numberp x)
		(realp x)
		(i-close x y)
		(realp y))
	   (i-close (f1*f2 x) (f1*f2 y)))
  :hints (("Goal" :in-theory (enable standards-are-limited)))
  )
 |