1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
;;; This book proves some theorems about nested sums. A sum
;;; $\sum_{i}{a_i} is handled as a function a(i) that computes the ith
;;; term and a function sum_i that adds up the function a(i). Nested
;;; sums use an outer sum sum_i, and inner sum sum_i_j, and a function
;;; a(i,j) to compute the ith/jth term.
(in-package "ACL2")
(local (include-book "arithmetic/top" :dir :system))
(include-book "arithmetic/sumlist" :dir :system)
; Added by Matt K. for v2-7.
(add-match-free-override :once t)
(set-match-free-default :once)
;; We start by defining the function binop(i,j) which is used to
;; compute the term a_{i,j} in a nested sum.
(encapsulate
((binop (i j) t))
(local
(defun binop (i j)
(+ i j)))
(defthm binop-type-prescription
(acl2-numberp (binop i j))
:rule-classes (:rewrite :type-prescription))
)
;; We will define some basic functions to compute various nested
;; sums. Rather than computing the sum directoy, we build up a
;; sequence that has the elements we wish to add in the right order.
;; I.e., rather than returning a(i,1) + a(i,2) + ... + a(i,n), we
;; return the list (a(i,1), a(i,2), ..., a(i,n)).
;; Now, we define a function that "adds up" all the a_{i,j} elements
;; in the ith row.
(defun row-expansion-inner (i j n)
(declare (xargs :measure (nfix (1+ (- n j)))))
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (binop i j)
(row-expansion-inner i (1+ j) n))
nil))
;; Using the function above, we can "sum" all the a_{i,j} elements by
;; "adding" each of the m rows.
(defun row-expansion-outer (i m n)
(declare (xargs :measure (nfix (1+ (- m i)))))
(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(cons (sumlist (row-expansion-inner i 0 n))
(row-expansion-outer (1+ i) m n))
nil))
;; Similarly, we can "add up" all the a_{i,j} values in the jth column.
(defun col-expansion-inner (i j m)
(declare (xargs :measure (nfix (1+ (- m i)))))
(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(cons (binop i j) (col-expansion-inner (1+ i) j m))
nil))
;; And them "sum" all the a_{i,j} by "adding up" all the columns.
(defun col-expansion-outer (j m n)
(declare (xargs :measure (nfix (1+ (- n j)))))
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (sumlist (col-expansion-inner 0 j m))
(col-expansion-outer (1+ j) m n))
nil))
(in-theory (disable (:executable-counterpart row-expansion-inner)
(:executable-counterpart row-expansion-outer)
(:executable-counterpart col-expansion-inner)
(:executable-counterpart col-expansion-outer)))
;; This is just to specify that we want to "induct on n"....
(local
(defun natural-induction-hint (n)
(if (zp n)
0
(1+ (natural-induction-hint (1- n))))))
;; Now, if we add up all the rows up the (m-1)st row, we get the same
;; result as if we add up all the rows up to the mth row and then
;; subtract the mth row....
(defthm row-expansion-outer-split
(implies (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(equal (sumlist (row-expansion-outer i (1- m) n))
(- (sumlist (row-expansion-outer i m n))
(sumlist (row-expansion-outer m m n))))))
;; The sum of a column is zero when we start looking at elements
;; beyond the last row....
(defthm col-expansion-inner-out-of-bounds
(implies (< m i)
(equal (col-expansion-inner i j m) nil)))
;; Now, we can see what happens when we add up all the a_{i,j} in
;; column j up to row m-1 -- it's the same as we add up all the
;; a_{i,j} up to row m and then subtract a_{m,j}.
(defthm col-expansion-inner-split
(implies (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(equal (sumlist (col-expansion-inner i j (1- m)))
(- (sumlist (col-expansion-inner i j m))
(binop m j)))))
;; From the above, we can conclude that if we add up all the columns
;; up to row m-1, it's the same as if we add up all the columns up
;; to row m and then subtract row m.
(defthm col-expansion-outer-split
(implies (and (integerp m) (<= 0 m))
(equal (sumlist (col-expansion-outer j (1- m) n))
(- (sumlist (col-expansion-outer j m n))
(sumlist (row-expansion-inner m j n))))))
(in-theory (disable row-expansion-outer-split
col-expansion-inner-split
col-expansion-outer-split))
;; In the proofs to follow, we find many terms expanding empty
;; sequences (i.e., i>m or j>n or i<0, etc). So, we show that these
;; terms can be ignored:
(defthm row-expansion-outer-negative-m
(implies (< m 0)
(equal (row-expansion-outer i m n) nil)))
(defthm col-expansion-outer-negative-m
(implies (< m 0)
(equal (sumlist (col-expansion-outer j m N)) 0)))
(defthm row-expansion-outer-negative-n
(implies (< n 0)
(equal (sumlist (row-expansion-outer i m n)) 0)))
(defthm col-expansion-outer-negative-n
(implies (< n 0)
(equal (col-expansion-outer j m n) nil)))
(defthm row-expansion-non-integer-m
(implies (not (integerp m))
(equal (row-expansion-outer i m n) nil)))
(defthm col-expansion-outer-non-integer-m
(implies (not (integerp m))
(equal (sumlist (col-expansion-outer j m n)) 0)))
(defthm row-expansion-non-integer-n
(implies (not (integerp n))
(equal (sumlist (row-expansion-outer i m n)) 0)))
(defthm col-expansion-outer-non-integer-n
(implies (not (integerp n))
(equal (col-expansion-outer j m n) nil)))
;; Next we consider the special case when the number of rows or
;; columns is equal to 1 -- i.e., when the largest index is zero (yes,
;; I'm a C++ programmer by day)
(defthm row-expansion-inner-i-j-0
(equal (row-expansion-inner i j 0)
(if (equal j 0)
(list (binop i 0))
nil))
:hints (("Goal" :expand (row-expansion-inner i j 0))))
(defthm row-expansion-outer-i-0-0
(equal (row-expansion-outer i 0 0)
(if (and (equal i 0))
(list (binop 0 0))
nil))
:hints (("Goal" :expand (row-expansion-outer i 0 0))))
(defthm row-expansion-outer-with-m=0
(equal (sumlist (row-expansion-outer 0 0 n))
(sumlist (row-expansion-inner 0 0 n)))
:hints (("Goal" :expand (row-expansion-outer 0 0 n))))
(defthm col-expansion-inner-i-j-0
(equal (col-expansion-inner i j 0)
(if (equal i 0)
(list (binop 0 j))
nil))
:hints (("Goal" :expand (col-expansion-inner i j 0))))
(defthm col-expansion-outer-j-0-0
(equal (col-expansion-outer j 0 0)
(if (equal j 0)
(list (binop 0 0))
nil))
:hints (("Goal" :expand (col-expansion-outer j 0 0))))
(defthm col-expansion-outer-with-m=0
(equal (col-expansion-outer j 0 n)
(row-expansion-inner 0 j n))
:hints (("Goal" :induct (col-expansion-outer j 0 n))))
;; This culminates to the following result, which happens to be the
;; base case for the proof that the row-sum is equal to the
;; column-sum. In the case when there's only one row, you can compute
;; the sum by either adding "all" the row sums or by adding all the
;; column "sums".
(defthm ok-to-swap-inner-outer-expansions-base
(implies (zp m)
(equal (sumlist (row-expansion-outer 0 m n))
(sumlist (col-expansion-outer 0 m n))))
:hints (("Goal"
:cases ((not (integerp m))
(and (integerp m) (equal m 0))
(and (integerp m) (not (equal m 0)))))))
;; Another "empty" case:
(defthm row-expansion-outer-i>m
(implies (> i m)
(equal (row-expansion-outer i m n) nil)))
;; The following lemma simply "opens up" some outer row sums.
(defthm row-expansion-outer-m-m-n
(implies (and (integerp m) (<= 0 m))
(equal (sumlist (row-expansion-outer m m n))
(sumlist (row-expansion-inner m 0 n))))
:hints (("Goal" :expand (row-expansion-outer m m n))))
;; And now the first important theorem! The sum of all the a_{i,j}
;; can be computed either by adding the sum of the m rows or by adding
;; the sum of the n columns. The results will be equal.
(defthm ok-to-swap-inner-outer-sums
(equal (sumlist (row-expansion-outer 0 m n))
(sumlist (col-expansion-outer 0 m n)))
:hints (("Goal"
:induct (natural-induction-hint m))
("Subgoal *1/2"
:use ((:instance row-expansion-outer-split (i 0))
(:instance col-expansion-outer-split (j 0))))))
;; Now, we define a lower-triangular row sum. Basically, instead of
;; adding up all the elements of the ith row, we only add up the
;; elements through the ith column -- a_{i,1} ... a_{i,i}. So only
;; the values at or below the "diagonal" are non-zero.
(defun row-expansion-outer-lt (i m n)
(declare (xargs :measure (nfix (1+ (- m i)))))
(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(cons (sumlist (row-expansion-inner
i 0 (if (< i n) i n)))
(row-expansion-outer-lt (1+ i) m n))
nil))
;; We define the same sum, but using column-sums instead. The idea is
;; to add up the elements of column j but only starting at row j.
;; I.e., we add up a_{j,j}, a_{j+1,j}, ..., a_{m,j}.
(defun col-expansion-outer-lt (j m n)
(declare (xargs :measure (nfix (1+ (- n j)))))
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (sumlist (col-expansion-inner j j m))
(col-expansion-outer-lt (1+ j) m n))
nil))
;; Here's a different approach on the same idea. We define a new
;; b_{i,j} with the property that b_{i,j} = 0 for i<j.
(defun lt-binop (i j)
(if (< i j)
0
(binop i j)))
;; So now, we can define its row-sum as before....
(defun row-expansion-inner-using-lt (i j n)
(declare (xargs :measure (nfix (1+ (- n j)))))
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (lt-binop i j)
(row-expansion-inner-using-lt i (1+ j) n))
nil))
(defun row-expansion-outer-using-lt (i m n)
(declare (xargs :measure (nfix (1+ (- m i)))))
(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(cons (sumlist (row-expansion-inner-using-lt i 0 n))
(row-expansion-outer-using-lt (1+ i) m n))
nil))
;; ... and also its column sum.
(defun col-expansion-inner-using-lt (i j m)
(declare (xargs :measure (nfix (1+ (- m i)))))
(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(cons (lt-binop i j)
(col-expansion-inner-using-lt (1+ i) j m))
nil))
(defun col-expansion-outer-using-lt (j m n)
(declare (xargs :measure (nfix (1+ (- n j)))))
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (sumlist (col-expansion-inner-using-lt 0 j m))
(col-expansion-outer-using-lt (1+ j) m n))
nil))
;; From the main theorem above, we can either add the rows or add the
;; columns, and the result won't matter.
(defthm ok-to-swap-inner-outer-sums-using-lt
(equal (sumlist (row-expansion-outer-using-lt 0 m n))
(sumlist (col-expansion-outer-using-lt 0 m n)))
:hints (("Goal"
:by (:functional-instance ok-to-swap-inner-outer-sums
(binop lt-binop)
(row-expansion-outer row-expansion-outer-using-lt)
(row-expansion-inner row-expansion-inner-using-lt)
(col-expansion-outer col-expansion-outer-using-lt)
(col-expansion-inner col-expansion-inner-using-lt)))))
;; Now suppose we look at a column sum starting at a_{i,j} when i >= j
;; -- it doesn't matter if we use the regular column sum or the
;; triangular sum.
(defthm col-expansion-inner-using-lt-to-binop-large-i
(implies (and (integerp i) (integerp j) (integerp n)
(<= 0 j) (<= j i))
(equal (col-expansion-inner i j n)
(col-expansion-inner-using-lt i j n)))
:hints (("Goal" :induct (col-expansion-inner-using-lt i j n))))
;; If i<=j then the expansion of the column sum starting at a_{j,j} is
;; the same as the "triangular" expansion starting at a_{i,j}, since
;; the a_{i,j}, a_{i+1,j}, ..., a_{j,j} terms are all ignored by the
;; "triangular" sum.
(defthm col-expansion-inner-using-lt-to-binop
(implies (and (integerp i) (integerp j) (integerp n)
(<= 0 i) (<= i j))
(equal (sumlist (col-expansion-inner j j n))
(sumlist (col-expansion-inner-using-lt i j n))))
:hints (("Goal" :induct (col-expansion-inner-using-lt i j n))))
;; So in particular, the triangular sum of the entire jth column is
;; equal to the sum of the column starting at a_{j,j}.
(defthm col-expansion-inner-j-j-n
(implies (and (integerp j) (integerp n) (<= 0 j))
(equal (sumlist (col-expansion-inner j j n))
(sumlist (col-expansion-inner-using-lt 0 j n))))
:hints (("Goal"
:by (:instance col-expansion-inner-using-lt-to-binop (i 0)))))
;; The triangular sum of the ith row starting from column j is zero if
;; j > i -- since a_{i,j} is ignored for i<j.
(defthm row-expansion-inner-using-lt-to-binop-large-j
(implies (< i j)
(equal (sumlist (row-expansion-inner-using-lt i j m)) 0)))
;; From that, we can conclude that the sum of the ith row up to column
;; i is equal to the "triangular" sum of row i.
(defthm row-expansion-inner-using-lt-to-binop
(implies (and (integerp i) (integerp n) (< i n))
(equal (sumlist (row-expansion-inner i j i))
(sumlist (row-expansion-inner-using-lt i j n)))))
;; Some more empty cases! This time, we look at the sums of the
;; b_{i,j} -- recall that b_{i,j} is zero for i<j.
(defthm col-expansion-outer-lt-non-integerp-n
(implies (not (integerp n))
(equal (col-expansion-outer-lt i m n) nil)))
(defthm col-expansion-outer-using-lt-non-integerp-n
(implies (not (integerp n))
(equal (col-expansion-outer-using-lt i m n) nil)))
(defthm col-expansion-inner-using-lt-to-binop-large-j
(implies (and (integerp i)
(<= 0 i)
(integerp j)
(<= 0 j)
(integerp m)
(<= 0 m)
(< m j))
(equal (sumlist (col-expansion-inner-using-lt i j m)) 0)))
;; What this means is that the triangular column sum of the a_{i,j} is
;; the same as the sum of the b_{i,j}, since b_{i,j} is equal to
;; a_{i,j} if i<=j and 0 otherwise.
(defthm col-expansion-outer-lt-=-col-expansion-outer-using-lt
(implies (integerp m)
(equal (sumlist (col-expansion-outer-lt i m n))
(sumlist (col-expansion-outer-using-lt i m n))))
:hints (("Goal" :induct (col-expansion-outer-using-lt i m n))
("Subgoal *1/1.8"
:use ((:instance col-expansion-inner-using-lt-to-binop-large-j
(i 0)
(j i)
(m m)))
:in-theory (disable col-expansion-inner-using-lt-to-binop-large-j))
("Subgoal *1/1.5"
:use ((:instance col-expansion-inner-using-lt-to-binop
(i 1)
(j i)
(n m)))
:in-theory (disable col-expansion-inner-using-lt-to-binop))
)
:rule-classes
((:rewrite :corollary (equal (sumlist (col-expansion-outer-lt i m n))
(sumlist (col-expansion-outer-using-lt i m n))))))
;; Now, we try the same theorem, but using row sums instead. First,
;; some boundary conditions. When we're looking at a row beyond the
;; last row, both terms below are nil, and so they're equal.
(defthm row-expansion-inner-large-i
(implies (<= n i)
(equal (row-expansion-inner i j n)
(row-expansion-inner-using-lt i j n))))
;; And since the terms b_{i,j} are zero for i<j, the sum of the ith
;; row can be computed by going up just to column i.
(defthm row-expansion-inner-large-n
(implies (and (integerp i) (integerp n) (< i n))
(equal (sumlist (row-expansion-inner-using-lt i j n))
(sumlist (row-expansion-inner-using-lt i j i)))))
;; And so, the row sum of the b_{i,j} is the same as the triangular
;; sum of the a_{i,j}.
(defthm row-expansion-outer-lt-=-row-expansion-outer-using-lt
(implies (integerp n)
(equal (row-expansion-outer-lt i m n)
(row-expansion-outer-using-lt i m n))))
;; Therefore, the triangular row sum and triangular column sum compute
;; the same value.
(defthm ok-to-swap-inner-outer-expansions-lt
(implies (integerp n)
(equal (sumlist (row-expansion-outer-lt 0 m n))
(sumlist (col-expansion-outer-lt 0 m n)))))
;; Next, let's consider the special case of square "matrices". I.e.,
;; when we have as many rows as columns. First, we give the
;; definition of the row and column sums as just a special case of the
;; rectangular case. Obviously, they compute the same value!
(defun row-expansion-outer-m=n-aux (i n)
(row-expansion-outer i n n))
(defun col-expansion-outer-m=n-aux (j n)
(col-expansion-outer j n n))
(defthm ok-to-swap-inner-outer-expansions-m=n-aux
(equal (sumlist (row-expansion-outer-m=n-aux 0 n))
(sumlist (col-expansion-outer-m=n-aux 0 n))))
;; Now, we give a direct definition of the row sum...
(defun row-expansion-outer-m=n (i n)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (sumlist (row-expansion-inner i 0 n))
(row-expansion-outer-m=n (1+ i) n))
nil))
;; ... as well as the column sum.
(defun col-expansion-outer-m=n (j n)
(declare (xargs :measure (nfix (1+ (- n j)))))
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (sumlist (col-expansion-inner 0 j n))
(col-expansion-outer-m=n (1+ j) n))
nil))
;; Clearly, these functions return the same value as the original ones
;; that used the underlying rectangular sums.
(local
(defthm row-col-expansion-outer-m=n-aux
(and (equal (row-expansion-outer-m=n i n)
(row-expansion-outer-m=n-aux i n))
(equal (col-expansion-outer-m=n i n)
(col-expansion-outer-m=n-aux i n)))))
;; So we can conclude that the row sum is the same as the column sum.
(defthm ok-to-swap-inner-outer-expansions-m=n
(equal (sumlist (row-expansion-outer-m=n 0 n))
(sumlist (col-expansion-outer-m=n 0 n))))
;; Now we do the same step but using triangular sums. First, we
;; define triangular sums of square matrices using the rectangular
;; definitions. We show the two triangular sums must be equal to each
;; other.
(defun row-expansion-outer-lt-m=n-aux (i n)
(row-expansion-outer-lt i n n))
(defun col-expansion-outer-lt-m=n-aux (j n)
(col-expansion-outer-lt j n n))
(defthm ok-to-swap-inner-outer-expansions-lt-m=n-aux
(implies (integerp n)
(equal (sumlist (row-expansion-outer-lt-m=n-aux 0 n))
(sumlist (col-expansion-outer-lt-m=n-aux 0 n)))))
;; Now, we give an explicit definition for the triangular sums.
(defun row-expansion-outer-lt-m=n (i n)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (sumlist (row-expansion-inner i 0 (if (< i n) i n)))
(row-expansion-outer-lt-m=n (1+ i) n))
nil))
(defun col-expansion-outer-lt-m=n (j n)
(declare (xargs :measure (nfix (1+ (- n j)))))
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (sumlist (col-expansion-inner j j n))
(col-expansion-outer-lt-m=n (1+ j) n))
nil))
(local
(defthm row-col-expansion-outer-lt-m=n-aux
(and (equal (row-expansion-outer-lt-m=n i n)
(row-expansion-outer-lt-m=n-aux i n))
(equal (col-expansion-outer-lt-m=n i n)
(col-expansion-outer-lt-m=n-aux i n)))))
;; And of course, we conclude that we can sum either rows first or
;; columns first.
(defthm ok-to-swap-inner-outer-expansions-lt-m=n
(implies (integerp n)
(equal (sumlist (row-expansion-outer-lt-m=n 0 n))
(sumlist (col-expansion-outer-lt-m=n 0 n)))))
;; Finally, we consider a simple sum of a_0+a_1+...+a_n. We show that
;; if we multiply each of a_i by a constant k, the sum of adding up
;; the k*a_i terms is the same as k times the sum of the a_i.
;; First, here is the definition of the a_i and k.
(encapsulate
((zeroop () t)
(oneop (i) t))
(local (defun zeroop () 0))
(local (defun oneop (i) (fix i)))
(defthm zeroop-type-prescription
(acl2-numberp (zeroop))
:rule-classes (:rewrite :type-prescription))
(defthm oneop-type-prescription
(acl2-numberp (oneop i))
:rule-classes (:rewrite :type-prescription))
)
;; Now here is the sum of the a_i....
(defun expansion-oneop (i n)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (oneop i)
(expansion-oneop (1+ i) n))
nil))
;; And here is the sum of the k*a_i....
(defun expansion-oneop-times-zeroop (i n)
(declare (xargs :measure (nfix (1+ (- n i)))))
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (* (oneop i) (zeroop))
(expansion-oneop-times-zeroop (1+ i) n))
nil))
;; And now, sum(k*a_0, k*a_1, ..., k*a_n) = k * sum(a_0, ..., a_n)
(defthm factor-constant-from-expansion
(equal (sumlist (expansion-oneop-times-zeroop i n))
(* (sumlist (expansion-oneop i n)) (zeroop)))
:hints (("Goal" :induct (expansion-oneop i n))))
|