File: overspill-proof.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (320 lines) | stat: -rw-r--r-- 10,584 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
; Copyright (C) 2015, Regents of the University of Texas
; Written by Matt Kaufmann in consultation with Cuong Chau, April, 2015
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; cert_param: (uses-acl2r)

(in-package "ACL2")

; Proof of the overspill property in ACL2(r)

; This book contains supporting events for the book overspill.lisp.  Below I
; summarize the approach in the present book, which can be divided into three
; parts.

; The first main result in this book is as follows.  The details of functions
; large-n-for-overspill-p and overspill-p-failure-witness don't matter here;
; what's important is that overspill-p is an arbitrary classical function with
; trivial constraint of t.

;   (defthm overspill-p-overspill-weak
;     (let ((n (large-n-for-overspill-p x))
;           (k (overspill-p-failure-witness x)))
;       (or (and (natp k)
;                (standardp k)
;                (not (overspill-p k x)))
;           (and (natp n)
;                (i-large n)
;                (overspill-p n x))))
;     :hints ...
;     :rule-classes nil)

; In the second part of this book we extend this result to "overspill" a
; predicate in a stronger sense, namely, so that the predicate holds for all
; natural numbers less than some nonstandard n.

;   (defthm overspill-p-overspill-main-1
;     (let ((n (large-n-for-overspill-p* x))
;           (k (least-overspill-p-failure (overspill-p*-failure-witness x)
;                                         x)))
;       (or (and (natp k)
;                (standardp k)
;                (not (overspill-p k x)))
;           (and (natp n)
;                (i-large n)
;                (overspill-p* n x))))
;     :hints ...
;     :rule-classes nil)

; Finally, we restate the above result entirely in terms of overspill-p
; (instead of overspill-p*), and we do this using a single witness function.

;   (defthm overspill-p-overspill
;     (let ((n (overspill-p-witness x)))
;       (or (and (natp n)
;                (standardp n)
;                (not (overspill-p n x)))
;           (and (natp n)
;                (i-large n)
;                (implies (and (natp m)
;                              (<= m n))
;                         (overspill-p m x)))))
;     :hints (("Goal" :use (overspill-p-overspill-main-2)))
;     :rule-classes nil)

(defstub overspill-p (n x) t)

(defchoose choose-n-for-not-overspill-p (n) (x)
  (and (natp n)
       (not (overspill-p n x))))

(defun large-n-for-overspill-p-aux (n x)

; Return the first n' reached below n, as we count down, such that (overspill-p
; n' x).

  (cond ((zp n)
         0)
        ((overspill-p n x)
         n)
        (t (large-n-for-overspill-p-aux (1- n) x))))

(defun large-n-for-overspill-p (x)
  (let ((n (choose-n-for-not-overspill-p x)))
    (if (not (and (natp n)
                  (not (overspill-p n x))))
        (i-large-integer)
      (large-n-for-overspill-p-aux n x))))

(defthm large-n-for-overspill-p-aux-makes-overspill-p-true
  (implies (and (natp m)
                (natp n)
                (<= m n)
                (overspill-p m x))
           (and (>= (large-n-for-overspill-p-aux n x)
                    m)
                (overspill-p (large-n-for-overspill-p-aux n x) x)))
  :rule-classes nil)

(defthm choose-n-for-not-overspill-p-rewrite
  (implies (and (not (let ((n (choose-n-for-not-overspill-p x)))
                       (and (natp n) (not (overspill-p n x)))))
                (natp n))
           (overspill-p n x))
  :hints (("Goal" :use choose-n-for-not-overspill-p)))

(defthm i-large-is-not-standardp
  (implies (natp x)
           (equal (i-large x)
                  (not (standardp x))))
  :hints (("Goal"
           :in-theory (disable standard-constants-are-limited
                               limited-integers-are-standard)
           :use (standard-constants-are-limited
                 limited-integers-are-standard))))

(defthm not-standardp-i-large-integer
  (not (standardp (i-large-integer)))
  :hints (("Goal"
           :use
           (i-large-integer-is-large
            (:instance i-large-is-not-standardp
                       (x (i-large-integer))))
           :in-theory (disable i-large-is-not-standardp))))

(in-theory (disable i-large))

(defthm one-more-than-large-n-for-overspill-p-aux-makes-overspill-p-false
  (implies (and (posp n)
                (not (overspill-p n x)))
           (not (overspill-p (1+ (large-n-for-overspill-p-aux n x)) x)))
  :hints (("Goal" :expand ((large-n-for-overspill-p-aux 1 x))))
  :rule-classes nil)

(defund overspill-p-failure-witness (x)
  (cond ((not (overspill-p 0 x))
         0)
        ((not (overspill-p 1 x))
         1)
        (t
         (1+ (large-n-for-overspill-p x)))))

(defthm overspill-p-overspill-weak
  (let ((n (large-n-for-overspill-p x))
        (k (overspill-p-failure-witness x)))
    (or (and (natp k)
             (standardp k)
             (not (overspill-p k x)))
        (and (natp n)
             (overspill-p n x)
             (i-large n))))
  :hints (("Goal"
           :in-theory (enable overspill-p-failure-witness)
           :use ((:instance
                  large-n-for-overspill-p-aux-makes-overspill-p-true (m 1)
                  (n (choose-n-for-not-overspill-p x)))
                 (:instance
                  one-more-than-large-n-for-overspill-p-aux-makes-overspill-p-false
                  (n (choose-n-for-not-overspill-p x))))))
  :rule-classes nil)

; Now, apply the above generic result to prove a better generic result, namely,
; that we overspill to some n such that the property holds not only for n, but
; also for all i < n.

(defun overspill-p* (n x)
  (if (zp n)
      (overspill-p 0 x)
    (and (overspill-p n x)
         (overspill-p* (1- n) x))))

(defchoose choose-n-for-not-overspill-p* (n) (x)
  (and (natp n)
       (not (overspill-p* n x))))

(defun large-n-for-overspill-p*-aux (n x)

; Return the first n' reached below n, as we count down, such that (overspill-p*
; n' x).

  (cond ((zp n) ; impossible
         0)
        ((overspill-p* n x)
         n)
        (t (large-n-for-overspill-p*-aux (1- n) x))))

(defun large-n-for-overspill-p* (x)
  (let ((n (choose-n-for-not-overspill-p* x)))
    (if (not (and (natp n)
                  (not (overspill-p* n x))))
        (i-large-integer)
      (large-n-for-overspill-p*-aux n x))))

(defthm choose-n-for-not-overspill-p*-rewrite
  (implies (and (not (let ((n (choose-n-for-not-overspill-p* x)))
                       (and (natp n) (not (overspill-p* n x)))))
                (natp n))
           (overspill-p* n x))
  :hints (("Goal" :use choose-n-for-not-overspill-p*)))

(defund overspill-p*-failure-witness (x)
  (cond ((not (overspill-p* 0 x))
         0)
        ((not (overspill-p* 1 x))
         1)
        (t
         (1+ (large-n-for-overspill-p* x)))))

(defthm overspill-p*-overspill
  (let ((n (large-n-for-overspill-p* x))
        (k (overspill-p*-failure-witness x)))
    (or (and (natp k)
             (standardp k)
             (not (overspill-p* k x)))
        (and (natp n)
             (i-large n)
             (overspill-p* n x))))
  :hints (("Goal"
           :in-theory (enable overspill-p*-failure-witness)
           :by (:functional-instance
                overspill-p-overspill-weak
                (overspill-p overspill-p*)
                (choose-n-for-not-overspill-p choose-n-for-not-overspill-p*)
                (large-n-for-overspill-p-aux large-n-for-overspill-p*-aux)
                (large-n-for-overspill-p large-n-for-overspill-p*)
                (overspill-p-failure-witness overspill-p*-failure-witness))))
  :rule-classes nil)

(defthm overspill-p*-implies-overspill-p-smaller
  (implies (and (overspill-p* n x)
                (natp n)
                (natp m)
                (<= m n))
           (overspill-p m x)))

(defun least-overspill-p-failure (k x)
  (cond ((zp k) 0)
        ((not (overspill-p k x)) k)
        (t (least-overspill-p-failure (1- k) x))))

(defthm not-overspill-p-for-least-overspill-p-failure
  (implies (and (natp k)
                (not (overspill-p* k x)))
           (not (overspill-p (least-overspill-p-failure k x) x))))

(defthm least-overspill-p-failure-<
  (implies (natp k)
           (<= (least-overspill-p-failure k x)
               k))
  :rule-classes :linear)

(defun sub1-induction (n)
  (if (zp n)
      n
    (sub1-induction (1- n))))

(defthm standard-p-preserved-below-natp
  (implies (and (standardp n)
                (natp m)
                (natp n)
                (<= m n))
           (standardp m))
  :hints (("Goal" :induct (sub1-induction n))))

(defthm overspill-p-overspill-main-1
  (let ((n (large-n-for-overspill-p* x))
        (k (least-overspill-p-failure (overspill-p*-failure-witness x)
                                      x)))
    (or (and (natp k)
             (standardp k)
             (not (overspill-p k x)))
        (and (natp n)
             (i-large n)
             (overspill-p* n x))))
  :hints (("Goal" :use overspill-p*-overspill
           :in-theory (disable large-n-for-overspill-p*)))
  :rule-classes nil)

(defchoose overspill-p-witness (n) (x)
  (or (and (natp n)
           (standardp n)
           (not (overspill-p n x)))
      (and (natp n)
           (i-large n)
           (overspill-p* n x))))

(defthm overspill-p-overspill-main-2
  (let ((n (overspill-p-witness x)))
    (or (and (natp n)
             (standardp n)
             (not (overspill-p n x)))
        (and (natp n)
             (i-large n)
             (overspill-p* n x))))
  :hints (("Goal"
           :in-theory (theory 'minimal-theory)
           :use
           (overspill-p-overspill-main-1
            (:instance overspill-p-witness
                       (n (let ((n (large-n-for-overspill-p* x)))
                            (if (and (natp n)
                                     (i-large n)
                                     (overspill-p* n x))
                                (large-n-for-overspill-p* x)
                              (least-overspill-p-failure
                               (overspill-p*-failure-witness x)
                               x))))))))
  :rule-classes nil)

(defthm overspill-p-overspill
  (let ((n (overspill-p-witness x)))
    (or (and (natp n)
             (standardp n)
             (not (overspill-p n x)))
        (and (natp n)
             (i-large n)
             (implies (and (natp m)
                           (<= m n))
                      (overspill-p m x)))))
  :hints (("Goal" :use (overspill-p-overspill-main-2)))
  :rule-classes nil)