1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
;;; In sqrt-iter.lisp, we defined a function, sqrt-iter, which returns an
;;; approximation of the square root of a number. Now, using ACL2(r), we will
;;; use sqrt-iter to define the real square root function. The approach is
;;; simple. First, we establish that sqrt-iter returns a limited number for
;;; limited values. Thus, if we take the standard-part of sqrt-iter, that will
;;; be a standard result for a standard argument. Hence, we can use defun-std
;;; to define the square root function, provided we choose a small enough
;;; epsilon -- any infinitesimal will do, but (/ (i-large-integer)) is the
;;; obvious candidate.
(in-package "ACL2")
(include-book "nsa")
(include-book "sqrt-iter")
(local (include-book "arithmetic/idiv" :dir :system))
(local (include-book "arithmetic/realp" :dir :system))
(local (include-book "arithmetic/top" :dir :system))
; Added by Matt K. for v2-7.
(add-match-free-override :once t)
(set-match-free-default :once)
;; First, we need to create a type-prescription rule for sqrt-iter, so
;; that ACL2 can reason about formulas involving sqrt-iter terms.
;; Notice, this also establishes a lower bound on sqrt-iter (namely 0).
(defthm sqrt-iter-type-prescription
(and (realp (sqrt-iter x epsilon))
(<= 0 (sqrt-iter x epsilon)))
:rule-classes (:type-prescription :rewrite))
;; Next, we establish that sqrt-iter is bounded above.
(defthm sqrt-iter-upper-bound-1
(implies (and (realp x)
(<= 1 x))
(<= (sqrt-iter x epsilon) x)))
(defthm sqrt-iter-upper-bound-2
(implies (and (realp x)
(< x 1))
(<= (sqrt-iter x epsilon) 1)))
;; Since sqrt-iter is bounded above by max{1,x}, it is obviously
;; limited when x is limited.
(defthm limited-sqrt-iter
(implies (and (i-limited x)
(realp x)
(<= 0 x))
(i-limited (sqrt-iter x epsilon)))
:hints (("Goal"
:cases ((< x 1))
:in-theory (disable sqrt-iter))
("Subgoal 2"
:use ((:instance large-if->-large
(x (sqrt-iter x epsilon))
(y x)))
:in-theory (disable sqrt-iter
large-if->-large))
("Subgoal 1"
:use ((:instance large-if->-large
(x (sqrt-iter x epsilon))
(y 1)))
:in-theory (disable sqrt-iter
large-if->-large))))
;; A stronger version of the theorem avoids the check on x being
;; real. The reason this result is still true is that for non-real x,
;; sqrt-iter simply returns 0.
(defthm limited-sqrt-iter-strong
(implies (i-limited x)
(i-limited (sqrt-iter x epsilon)))
:hints (("Goal"
:cases ((and (realp x) (<= 0 x)))
:in-theory (disable sqrt-iter))
("Subgoal 2"
:expand (sqrt-iter x epsilon))))
(in-theory (disable sqrt-iter))
;; This means we can now define the square root function in ACL2. Of
;; course, we are not using any properties of epsilon here, so it is
;; possible to choose a "bad" value. For example, if 1 is used
;; instead of (/ (i-large-integer)), the resulting function would NOT
;; be the real square root function. The theorems below will show
;; that (/ (i-large-integer)) is a "good" value, so that acl2-sqrt has
;; the right properties.
(defun-std acl2-sqrt (x)
(standard-part (sqrt-iter (fix x) (/ (i-large-integer)))))
(in-theory (disable (:executable-counterpart acl2-sqrt)))
(in-theory (disable convergence-of-sqrt-iter))
;; The next theorem restates the convergence of sqrt-iter in terms of
;; infinitesimal scale. In particular, it shows that the square of
;; sqrt-iter is close to x when epsilon is small -- that's why we
;; wouldn't have been able to choose "1" as epsilon in the definition
;; above!
(defthm convergence-of-sqrt-iter-strong
(implies (and (realp x)
(realp epsilon)
(< 0 epsilon)
(i-small epsilon)
(<= 0 x))
(i-close (* (sqrt-iter x epsilon)
(sqrt-iter x epsilon))
x))
:hints (("Goal"
:use ((:instance convergence-of-sqrt-iter))
:in-theory (enable i-close))))
;; Now comes the fundamental theorem of the square root function!
;; This establishes that acl2-sqrt *is* the square root function as
;; promised.
(defthm-std sqrt-sqrt
(implies (and (realp x)
(<= 0 x))
(equal (* (acl2-sqrt x) (acl2-sqrt x)) x))
:hints (("Goal''"
:use (:instance convergence-of-sqrt-iter-strong
(epsilon (/ (i-large-integer))))
:in-theory (disable convergence-of-sqrt-iter-strong))
("Goal'4'"
:in-theory (enable i-close i-small))))
;; ACL2 is really bad at algebra. My dog knows more algebra -- and
;; it's not a smart breed. The following simply states that if x<y,
;; then x^2 < y^2.
(local
(encapsulate
()
; Added by Matt K., 1/14/2014:
; The following two lemmas are the versions of lemmas that existed though the
; time of the ACL2 6.4 release. The new versions, whose conclusions are calls
; of equal instead of iff, cause the proof of lemma-1 below to fail; so we
; :use these old ones instead.
(local
(defthm <-*-right-cancel-old
(implies (and (fc (real/rationalp x))
(fc (real/rationalp y))
(fc (real/rationalp z)))
(iff (< (* x z) (* y z))
(cond ((< 0 z) (< x y))
((equal z 0) nil)
(t (< y x)))))
:rule-classes nil))
(local
(defthm <-*-left-cancel-old
(implies (and (fc (real/rationalp x))
(fc (real/rationalp y))
(fc (real/rationalp z)))
(iff (< (* z x) (* z y))
(cond ((< 0 z) (< x y))
((equal z 0) nil)
(t (< y x)))))
:rule-classes nil))
(local
(defthm lemma-1
(implies (and (realp x)
(realp y)
(<= 0 x)
(<= 0 y)
(< x y))
(< (* x x) (* y y)))
:hints (("Goal"
:use ((:instance <-*-left-cancel-old (x x) (y y) (z x))
(:instance <-*-right-cancel-old (x x) (y y) (z y)))
:in-theory (disable <-*-left-cancel <-*-right-cancel)))))
(defthm x*x-<-y*y
(implies (and (realp x)
(realp y)
(<= 0 x)
(<= 0 y))
(equal (< (* x x) (* y y))
(< x y)))
:hints (("Goal"
:cases ((< x y) (= x y) (< y x)))))))
;; This theorem lets us reason about whether sqrt(x)<y for some y --
;; it rewrites those expressions into x < y^2 which should be easier
;; to prove.
(defthm sqrt-<-y
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (< (acl2-sqrt x) y)
(< x (* y y))))
:hints (("Goal"
:use ((:instance x*x-<-y*y (x (acl2-sqrt x))))
:in-theory (disable x*x-<-y*y))))
;; This is the same theorem, but going the other way....
(defthm y-<-sqrt
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (< y (acl2-sqrt x))
(< (* y y) x)))
:hints (("Goal"
:use ((:instance x*x-<-y*y (x y) (y (acl2-sqrt x))))
:in-theory (disable x*x-<-y*y))))
;; Now comes an important theorem. If y^2 = x, then we can conclude
;; that y *is* the square root of x -- as long as y is a positive
;; real, anyway.
(defthm y*y=x->y=sqrt-x
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y)
(equal (* y y) x))
(equal (acl2-sqrt x) y))
:hints (("Goal"
:cases ((< (acl2-sqrt x) y)
(< y (acl2-sqrt x))))))
;; This simple theorem helps us decide when a number is equal to the
;; square root of x -- simply square both sides and go from
;; there....at least for positive numbers!
(defthm sqrt-=-y
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (equal (acl2-sqrt x) y)
(equal x (* y y))))
:hints (("Goal"
:cases ((equal (acl2-sqrt x) y)))))
;; Ditto, but in the other direction -- no way to tell which way ACL2
;; decided to order these terms...
(defthm y-=-sqrt
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (equal y (acl2-sqrt x))
(equal (* y y) x)))
:hints (("Goal"
:use ((:instance sqrt-=-y))
:in-theory (disable sqrt-=-y))))
;; This theorem settles the question of sqrt(x) being larger than y by
;; squaring both sides.
(defthm sqrt->-y
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (> (acl2-sqrt x) y)
(> x (* y y))))
:hints (("Goal"
:use ((:instance y-<-sqrt))
:in-theory (disable y-<-sqrt))))
;; Ditto.
(defthm y->-sqrt
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (< y (acl2-sqrt x))
(< (* y y) x)))
:hints (("Goal"
:use ((:instance sqrt-<-y))
:in-theory (disable sqrt-<-y))))
;; Ah, useful theorems! The square root of a product is the product
;; of the square roots (as long as everything is positive....)
(defthm sqrt-*
(implies (and (realp x)
(<= 0 x)
(realp y)
(<= 0 y))
(equal (acl2-sqrt (* x y))
(* (acl2-sqrt x) (acl2-sqrt y))))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x
(x (* x y))
(y (* (acl2-sqrt x) (acl2-sqrt y))))))))
;; And, the square root of an inverse is the inverse of the square root.
(defthm sqrt-/
(implies (and (realp x)
(<= 0 x))
(equal (acl2-sqrt (/ x))
(/ (acl2-sqrt x))))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x
(x (/ x))
(y (/ (acl2-sqrt x))))
(:instance distributivity-of-/-over-*
(x (acl2-sqrt x))
(y (acl2-sqrt x))))
:in-theory (disable y*y=x->y=sqrt-x distributivity-of-/-over-*))))
;; It follows, therefore, that the square root of x^2 is |x|.
(defthm sqrt-*-x-x
(implies (realp x)
(equal (acl2-sqrt (* x x)) (abs x)))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x (* x x)) (y (abs x)))))))
;; Some useful constants -- sqrt(0) = 0...
(defthm sqrt-0
(equal (acl2-sqrt 0) 0)
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x 0) (y 0))))))
;; ... and sqrt(1) = 1...
(defthm sqrt-1
(equal (acl2-sqrt 1) 1)
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x 1) (y 1))))))
;; ... and sqrt(4) = 2
(defthm sqrt-4
(equal (acl2-sqrt 4) 2)
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x (x 4) (y 2))))))
;; Sqrt(x) is positive when x is positive -- note that it's zero when
;; x is zero....
(defthm sqrt->-0
(implies (and (realp x)
(<= 0 x))
(equal (< 0 (acl2-sqrt x))
(< 0 x))))
;; If x <= 1, then so is its square root.
(defthm-std acl2-sqrt-x-<-1
(implies (and (realp x)
(<= 0 x)
(< x 1))
(<= (acl2-sqrt x) 1))
:hints (("Goal''"
:use ((:instance standard-part-<=
(x (SQRT-ITER X (/ (I-LARGE-INTEGER))))
(y 1))
(:instance sqrt-iter-upper-bound-2
(epsilon (/ (i-large-integer)))))
:in-theory (disable standard-part-<= sqrt-iter-upper-bound-2))))
;; For x >= 1, the square root is no larger than x.
(defthm-std acl2-sqrt-x-<-x
(implies (and (realp x)
(<= 0 x)
(<= 1 x))
(<= (acl2-sqrt x) x))
:hints (("Goal''"
:use ((:instance standard-part-<=
(x (sqrt-iter x (/ (i-large-integer))))
(y x))
(:instance sqrt-iter-upper-bound-1
(epsilon (/ (i-large-integer)))))
:in-theory (disable standard-part-<= sqrt-iter-upper-bound-1))))
;; The two theorems above demonstrate that sqrt(x) is limited as long
;; as x is limited, since sqrt(x) is always bounded by either 1 or x
(defthm limited-sqrt
(implies (and (realp x)
(<= 0 x)
(i-limited x))
(i-limited (acl2-sqrt x)))
:hints (("Goal"
:cases ((< x 1)))
("Subgoal 2"
:use ((:instance large-if->-large
(x (acl2-sqrt x))
(y x)))
:in-theory (disable large-if->-large))
("Subgoal 1"
:use ((:instance large-if->-large
(x (acl2-sqrt x))
(y 1)))
:in-theory (disable large-if->-large))))
;; An interesting theorem....the standard-part of a square root is the
;; square root of the standard-part of the argument! This is probably
;; true of all continuous functions, isn't it?
(defthm standard-part-sqrt
(implies (and (realp x)
(<= 0 x)
(i-limited x))
(equal (standard-part (acl2-sqrt x))
(acl2-sqrt (standard-part x))))
:hints (("Goal"
:use ((:instance y*y=x->y=sqrt-x
(x (standard-part x))
(y (standard-part (acl2-sqrt x))))))
("Goal'''"
:use ((:instance standard-part-of-times
(x (acl2-sqrt x))
(y (acl2-sqrt x)))))))
|