1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
#|==========================================
Cayley-Dickson Construction
cayley1.lisp
31 March 2017
The Reals form a (1 dimensional) composition algebra.
Real Composition Algebra:
A Real Vector Algebra with Identity:
A Real Vector Space with Multiplication
and a Multiplicative Identity.
The Vector Algebra also has a real valued Norm
and a real valued Dot (or Inner) Product
satisfying the Composition Law
Norm(xy) = Norm(x)Norm(y).
This algebra has a trivial conjugate and
its multiplication is commutative and
associative. Since the algebra satisfies
the Composition Law, the algebra has NO
nontrivial zero divisors. All nonzero vectors
have multiplicative inverses.
References:
J.H. Conway and D.A. Smith, On Quaternions and Octonions: Their Geometry,
Arithmetic, and Symmetry, A K Peters, 2003, pages 67--73.
H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer,
J. Neukirch, A. Prestel, and R. Remmert, Numbers, Springer, 1991, pp 256--261,
265--274
ACL2 Version 7.4(r) built March 30, 2017 08:51:54.
System books directory "/home/acl2/acl2-7.4r/acl2-7.4/books/".
ACL2 Version 7.4 built March 29, 2017 10:38:07.
System books directory "/home/acl2/acl2-7.4/acl2-7.4/books/".
===============================|#
#|====================================
To certify:
(certify-book "cayley1"
0 ;; world with no commands
)
===============================
To use:
(include-book
"cayley1"
:uncertified-okp nil
:defaxioms-okp nil
:skip-proofs-okp nil
)
=====================================|#
#|===============================================
:set-gag-mode t ; enable gag-mode, suppressing most proof commentary
(set-gag-mode t) ; same as above
:set-gag-mode :goals ; same as above, but print names of goals when produced
:set-gag-mode nil ; disable gag-mode
==============|#
#|==============================
(LD
"cayley1.lisp") ; read and evaluate each form in file
==================|#
(in-package "ACL2")
(local
(include-book "arithmetic/top" :dir :system
:uncertified-okp nil
:defaxioms-okp nil
:skip-proofs-okp nil))
;;===============================
;;==Real Vector Space Operations:
;; Predicate for set of vectors
(defun
1p (x)
(real/rationalp x))
;; Zero vector
(defun
1_0 ()
0)
;; Vector addition
(defun
1_+ (x y)
(+ x y))
;; Vector minus
(defun
1_- (x)
(- x))
;; Scalar multiplication
(defun
S1_* (a x)
(* a x))
;;================================================
;;==Vector Multiplication and Identity Operations:
;; Vector multiplication
(defun
1_* (x y)
(* x y))
;; One vector
(defun
1_1 ()
1)
;;=================
;;==Norm operation:
;; Vector Norm
(defun
1_norm (x)
(* x x))
;;===================================
;;==Dot (or Inner) Product Operation:
;; Vector Dot Product
(defun
1_dot (x y)
(* x y))
;;========================
;;==Conjugation Operation:
;; Vector conjugate
(defun
1_conjugate (x)
(identity x))
;;==========================
;; Real Vector Space Axioms:
(defthmD
1-Vector-closure
(and (1p (1_0))
(implies (and (1p x)
(1p y))
(1p (1_+ x y)))
(implies (1p x)
(1p (1_- x)))
(implies (and (real/rationalp a)
(1p x))
(1p (S1_* a x)))))
(defthmD
Associativity-of-1_+
(implies (and (1p x)
(1p y)
(1p z))
(equal (1_+ (1_+ x y) z)
(1_+ x (1_+ y z)))))
(defthmD
Commutativity-of-1_+
(implies (and (1p x)
(1p y))
(equal (1_+ x y)
(1_+ y x))))
(defthmD
Unicity-of-1_0
(implies (1p x)
(equal (1_+ (1_0) x)
x)))
(defthmD
Inverse-of-1_+
(implies (1p x)
(equal (1_+ x (1_- x))
(1_0))))
(defthmD
Associativity-of-S1_*
(implies (and (real/rationalp a)
(real/rationalp b)
(1p x))
(equal (S1_* a (S1_* b x))
(S1_* (* a b) x))))
(defthmD
Unicity-of-Scalar1-1
(implies (1p x)
(equal (S1_* 1 x) x)))
(defthmD
Distributivity-S1_*-scalar-+
(implies (and (real/rationalp a)
(real/rationalp b)
(1p x))
(equal (S1_* (+ a b) x)
(1_+ (S1_* a x)(S1_* b x)))))
(defthmD
Distributivity-S1_*-1_+
(implies (and (real/rationalp a)
(1p x)
(1p y))
(equal (S1_* a (1_+ x y))
(1_+ (S1_* a x)(S1_* a y)))))
;;=======================================
;; Additional Real Vector Algebra Axioms:
(defthmD
1_1&1_*-closure
(and (1p (1_1))
(implies (and (1p x)
(1p y))
(1p (1_* x y)))))
(defthmD
Not-1_1=1_0
(not (equal (1_1)(1_0))))
(defthmD
Left-Distributivity-1_*_1_+
(implies (and (real/rationalp a)
(real/rationalp b)
(1p x)
(1p y)
(1p z))
(equal (1_* x
(1_+ (S1_* a y)
(S1_* b z)))
(1_+ (S1_* a
(1_* x y))
(S1_* b
(1_* x z))))))
(defthmD
Right-Distributivity-1_*_1_+
(implies (and (real/rationalp a)
(real/rationalp b)
(1p x)
(1p y)
(1p z))
(equal (1_* (1_+ (S1_* a x)
(S1_* b y))
z)
(1_+ (S1_* a
(1_* x z))
(S1_* b
(1_* y z))))))
(defthmD
Unicity-of-1_1
(implies (1p x)
(and (equal (1_* (1_1) x) x)
(equal (1_* x (1_1)) x))))
;;===============================================
;; Additional Vector Norm and Dot Product Axioms:
(defthmD
Realp>=0-1_norm
(implies (1p x)
(and (real/rationalp (1_norm x))
(>= (1_norm x) 0))))
(defthmD
1_norm=0
(implies (1p x)
(equal (equal (1_norm x) 0)
(equal x (1_0)))))
(defthmD
1-Composition-Law
(implies (and (1p x)
(1p y))
(equal (1_norm (1_* x y))
(* (1_norm x)
(1_norm y)))))
(defthmD
1_dot-def
(equal (1_dot x y)
(* 1/2 (+ (1_norm (1_+ x y))
(- (1_norm x))
(- (1_norm y)))))
:rule-classes :definition)
(defthmD
Distributivity-1_dot-1_+
(implies (and (real/rationalp a)
(real/rationalp b)
(1p x)
(1p y)
(1p z))
(equal (1_dot (1_+ (S1_* a x)
(S1_* b y))
z)
(+ (* a (1_dot x z))
(* b (1_dot y z))))))
(defun-sk
Forall-u-1_dot-u-x=0 (x)
(forall (u)
(implies (1p u)
(equal (1_dot u x) 0)))
:rewrite :direct)
(defthmD
Forall-u-1_dot-u-x=0-def
(equal (Forall-u-1_dot-u-x=0 x)
(let ((u (Forall-u-1_dot-u-x=0-witness x)))
(implies (1p u)
(equal (1_dot u x) 0))))
:rule-classes :definition)
;; redundant
(defthm
Forall-u-1_dot-u-x=0-necc
(implies (Forall-u-1_dot-u-x=0 x)
(implies (1p u)
(equal (1_dot u x) 0))))
(local
(defthmD
1_dot=0
(implies (1p x)
(equal (equal (1_dot x x) 0)
(equal x (1_0))))))
(defthm ;;1_dot is nonsingular
Forall-u-1_dot-u-x=0->x=1_0
(implies (and (1p x)
(Forall-u-1_dot-u-x=0 x))
(equal x (1_0)))
:rule-classes nil
:hints (("Goal"
:in-theory (disable (:DEFINITION 1_DOT))
:use 1_dot=0)))
(in-theory (disable Forall-u-1_dot-u-x=0-necc))
(defthmD
1_conjugate-def-rewrite
(implies (1p x)
(equal (1_conjugate x)
(1_+ (S1_* (* 2 (1_dot x (1_1)))
(1_1))
(1_- x)))))
;;=================================
(defun
1_/ (x)
(S1_* (/ (1_norm x))
(1_conjugate x)))
(defthmD
1p-1_/
(implies (and (1p x)
(not (equal x (1_0))))
(1p (1_/ x))))
(defthmD
1_/=1_*-inverse-right
(implies (and (1p x)
(not (equal x (1_0))))
(equal (1_* x (1_/ x))
(1_1))))
(defthmD
1_/=1_*-inverse-left
(implies (and (1p x)
(not (equal x (1_0))))
(equal (1_* (1_/ x) x)
(1_1))))
;;=============================
(defthmD
1_conjugate-is-trivial
(equal (1_conjugate x)
(identity x)))
(defthmD
1_*-is-commutative
(implies (and (1p x)
(1p y))
(equal (1_* x y)
(1_* y x))))
(defthmD
1_*-is-associative
(implies (and (1p x)
(1p y)
(1p z))
(equal (1_* (1_* x y) z)
(1_* x (1_* y z)))))
|