1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
----------------------------------------------------------------------
Book Certification
----------------------------------------------------------------------
To certify books, execute the following:
make ACL2=<Path of the ACL2 image>
To remove certificate files, etc., execute the following:
make clean ACL2=<Path of the ACL2 image>
See Makefile file for the detail.
----------------------------------------------------------------------
Book Organization
----------------------------------------------------------------------
The DE simulator is implemented in de.lisp.
The modeling and verification of self-timed FIFO circuits are
implemented in fifo/.
The modeling and verification of self-timed serial adders are
implemented in serial-adder/.
See gcd/ for the modeling and verification of iterative self-timed
circuits that compute the Greatest Common Divisor (GCD) of two natural
numbers.
See arbitration/ for the modeling and verification of self-timed
circuits that perform arbitrated merge operations.
----------------------------------------------------------------------
Book Overview
----------------------------------------------------------------------
Each sequential self-timed module is modeled and verified in a book
consisting of the following four steps (e.g., see fifo/queue2.lisp and
fifo/queue10.lisp).
* DE Module Generator
* Multi-Step State Lemma
* Single-Step-Update Property
* Relationship Between the Input and Output Sequences
The structure of the above steps for a sequential self-timed module M
is described as follows.
1. DE Module Generator
M*: DE module generator for M with parameterized data sizes.
M$netlist: DE netlist generator for M. A generated netlist will
contain an instance of M.
M&: Recognizer for M.
M$st-format: conditions on the state format of M.
M$valid-st: stronger conditions on the state format of M. This
predicate requires that the status of each link is either full or
empty, and checks the validity of the data when the link is full.
Note, M$valid-st implies M$st-format.
M$outputs: specifying the outputs of M at the four-valued level.
M$value: the value lemma for M.
M$step: specifying the next state of M at the four-valued level.
M$state: the state lemma for M.
2. Multi-Step State Lemma
M$input-format: conditions on the input format of M. Note,
M$input-format implies S$input-format, where S is a submodule of M if
such S exists.
Prove the multi-step state lemma for M using macro "simulate-lemma".
3. Single-Step-Update Property
M$extract: an extraction function for M.
M$extracted-step: an extracted next-state function for M.
M$inv: specifying a state invariant for M (if any).
M$inv-preserved: a lemma confirming that M$inv is invariant (if M$inv
exists).
M$extracted-step-correct: a single-step-update property for M.
4. Relationship Between the Input and Output Sequences
M$valid-st-preserved: a lemma confirming that M$valid-st is invariant.
M$extract-lemma: a lemma about the relationship between M$extract and
the current output data. We use this lemma in formalizing the
relationship between the input and output sequences of M.
Introduce functions that extract the accepted input and valid output
sequences of M by applying macro "seq-gen".
Formalize the relationship between the input and output sequences of M
using macro "in-out-stream-lemma".
|