1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019
(in-package "ADE")
(include-book "arb-merge1")
(include-book "../fifo/queue40-l")
(local (include-book "arithmetic-3/top" :dir :system))
(local (include-book "std/lists/sets" :dir :system))
(local (in-theory (disable nth 3v-fix)))
;; ======================================================================
;;; Table of Contents:
;;;
;;; 1. DE Module Generator of INTERL
;;; 2. Multi-Step State Lemma
;;; 3. Single-Step-Update Property
;;; 4. Relationship Between the Input and Output Sequences
;; ======================================================================
;; 1. DE Module Generator of INTERL
;;
;; Construct a DE module generator for circuits performing the
;; first-come-first-served arbitrated merge using the link-joint model. These
;; circuits consist of two 40-link queues connected to the two input ports of
;; an arbitrated merge.
(defconst *interl$select-num* *arb-merge$select-num*)
(defconst *interl$prim-go-num* 2)
(defconst *interl$go-num* (+ *interl$prim-go-num*
(* 2 *queue40-l$go-num*)
*arb-merge$go-num*))
(defun interl$data-ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ 3 (* 2 (mbe :logic (nfix data-size)
:exec data-size))))
(defun interl$ins-len (data-size)
(declare (xargs :guard (natp data-size)))
(+ (interl$data-ins-len data-size)
*interl$select-num*
*interl$go-num*))
;; DE module generator of INTERL
(module-generator
interl* (data-size)
(si 'interl data-size)
(list* 'full-in0 'full-in1 'empty-out-
(append (sis 'data0-in 0 data-size)
(sis 'data1-in 0 data-size)
(cons 'select (sis 'go 0 *interl$go-num*))))
(list* 'in0-act 'in1-act 'out-act
(sis 'data-out 0 data-size))
'(q40-l0 q40-l1)
(list
;; LINKS
;; 40-link queue Q40-L0
(list 'q40-l0
(list* 'q40-l0-ready-in- 'q40-l0-ready-out
(sis 'q40-l0-data-out 0 data-size))
(si 'queue40-l data-size)
(list* 'in0-act 'out-act0
(append (sis 'q40-l0-data-in 0 data-size)
(sis 'go
*interl$prim-go-num*
*queue40-l$go-num*))))
;; 40-link queue Q40-L1
(list 'q40-l1
(list* 'q40-l1-ready-in- 'q40-l1-ready-out
(sis 'q40-l1-data-out 0 data-size))
(si 'queue40-l data-size)
(list* 'in1-act 'out-act1
(append (sis 'q40-l1-data-in 0 data-size)
(sis 'go
(+ *interl$prim-go-num*
*queue40-l$go-num*)
*queue40-l$go-num*))))
;; JOINTS
;; In0
(list 'in0-cntl
'(in0-act)
'joint-cntl
(list 'full-in0 'q40-l0-ready-in- (si 'go 0)))
(list 'in0-op
(sis 'q40-l0-data-in 0 data-size)
(si 'v-buf data-size)
(sis 'data0-in 0 data-size))
;; In1
(list 'in1-cntl
'(in1-act)
'joint-cntl
(list 'full-in1 'q40-l1-ready-in- (si 'go 1)))
(list 'in1-op
(sis 'q40-l1-data-in 0 data-size)
(si 'v-buf data-size)
(sis 'data1-in 0 data-size))
;; arb-merge
(list 'arb-merge
(list* 'out-act 'out-act0 'out-act1
(sis 'data-out 0 data-size))
(si 'arb-merge data-size)
(list* 'q40-l0-ready-out 'q40-l1-ready-out 'empty-out-
(append (sis 'q40-l0-data-out 0 data-size)
(sis 'q40-l1-data-out 0 data-size)
(cons 'select
(sis 'go
(+ *interl$prim-go-num*
(* 2 *queue40-l$go-num*))
*arb-merge$go-num*))))))
(declare (xargs :guard (natp data-size))))
(make-event
`(progn
,@(state-accessors-gen 'interl
'(q40-l0 q40-l1)
0)))
;; DE netlist generator. A generated netlist will contain an instance of
;; INTERL.
(defund interl$netlist (data-size)
(declare (xargs :guard (natp data-size)))
(cons (interl* data-size)
(union$ (queue40-l$netlist data-size)
(arb-merge$netlist data-size)
:test 'equal)))
;; Recognizer for INTERL
(defund interl& (netlist data-size)
(declare (xargs :guard (and (alistp netlist)
(natp data-size))))
(b* ((subnetlist (delete-to-eq (si 'interl data-size) netlist)))
(and (equal (assoc (si 'interl data-size) netlist)
(interl* data-size))
(joint-cntl& subnetlist)
(v-buf& subnetlist data-size)
(queue40-l& subnetlist data-size)
(arb-merge& subnetlist data-size))))
;; Sanity check
(local
(defthmd check-interl$netlist-64
(and (net-syntax-okp (interl$netlist 64))
(net-arity-okp (interl$netlist 64))
(interl& (interl$netlist 64) 64))))
;; Constraints on the state of INTERL
(defund interl$st-format (st data-size)
(b* ((q40-l0 (nth *interl$q40-l0* st))
(q40-l1 (nth *interl$q40-l1* st)))
(and (< 0 data-size)
(queue40-l$st-format q40-l0 data-size)
(queue40-l$st-format q40-l1 data-size))))
(defthm interl$st-format=>constraint
(implies (interl$st-format st data-size)
(posp data-size))
:hints (("Goal" :in-theory (enable interl$st-format)))
:rule-classes :forward-chaining)
(defund interl$valid-st (st data-size)
(b* ((q40-l0 (nth *interl$q40-l0* st))
(q40-l1 (nth *interl$q40-l1* st)))
(and (< 0 data-size)
(queue40-l$valid-st q40-l0 data-size)
(queue40-l$valid-st q40-l1 data-size))))
(defthmd interl$valid-st=>constraint
(implies (interl$valid-st st data-size)
(posp data-size))
:hints (("Goal" :in-theory (enable queue40-l$valid-st=>constraint
interl$valid-st)))
:rule-classes :forward-chaining)
(defthmd interl$valid-st=>st-format
(implies (interl$valid-st st data-size)
(interl$st-format st data-size))
:hints (("Goal" :in-theory (e/d (queue40-l$valid-st=>st-format
interl$st-format
interl$valid-st)
()))))
;; Extract the input and output signals for INTERL
(progn
;; Extract the 1st input data item
(defun interl$data0-in (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(take (mbe :logic (nfix data-size)
:exec data-size)
(nthcdr 3 inputs)))
(defthm len-interl$data0-in
(equal (len (interl$data0-in inputs data-size))
(nfix data-size)))
(in-theory (disable interl$data0-in))
;; Extract the 2nd input data item
(defun interl$data1-in (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(b* ((size (mbe :logic (nfix data-size)
:exec data-size)))
(take size
(nthcdr (+ 3 size) inputs))))
(defthm len-interl$data1-in
(equal (len (interl$data1-in inputs data-size))
(nfix data-size)))
(in-theory (disable interl$data1-in))
;; Extract the "in0-act" signal
(defund interl$in0-act (inputs st data-size)
(b* ((full-in0 (nth 0 inputs))
(go-signals (nthcdr (+ (interl$data-ins-len data-size)
*interl$select-num*)
inputs))
(go-in0 (nth 0 go-signals))
(q40-l0 (nth *interl$q40-l0* st))
(q40-l0-ready-in- (queue40-l$ready-in- q40-l0)))
(joint-act full-in0 q40-l0-ready-in- go-in0)))
(defthm interl$in0-act-inactive
(implies (not (nth 0 inputs))
(not (interl$in0-act inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$in0-act))))
;; Extract the "in1-act" signal
(defund interl$in1-act (inputs st data-size)
(b* ((full-in1 (nth 1 inputs))
(go-signals (nthcdr (+ (interl$data-ins-len data-size)
*interl$select-num*)
inputs))
(go-in1 (nth 1 go-signals))
(q40-l1 (nth *interl$q40-l1* st))
(q40-l1-ready-in- (queue40-l$ready-in- q40-l1)))
(joint-act full-in1 q40-l1-ready-in- go-in1)))
(defthm interl$in1-act-inactive
(implies (not (nth 1 inputs))
(not (interl$in1-act inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$in1-act))))
;; Extract the inputs for joint ARB-MERGE
(defund interl$arb-merge-inputs (inputs st data-size)
(b* ((empty-out- (nth 2 inputs))
(select (nth (interl$data-ins-len data-size) inputs))
(go-signals (nthcdr (+ (interl$data-ins-len data-size)
*interl$select-num*)
inputs))
(arb-merge-go-signals (take *arb-merge$go-num*
(nthcdr (+ *interl$prim-go-num*
*queue40-l$go-num*
*queue40-l$go-num*)
go-signals)))
(q40-l0 (nth *interl$q40-l0* st))
(q40-l1 (nth *interl$q40-l1* st))
(q40-l0-ready-out (queue40-l$ready-out q40-l0))
(q40-l0-data-out (queue40-l$data-out q40-l0))
(q40-l1-ready-out (queue40-l$ready-out q40-l1))
(q40-l1-data-out (queue40-l$data-out q40-l1)))
(list* q40-l0-ready-out q40-l1-ready-out empty-out-
(append q40-l0-data-out q40-l1-data-out
(cons select arb-merge-go-signals)))))
;; Extract the "out-act0" signal
(defund interl$out-act0 (inputs st data-size)
(b* ((arb-merge-inputs (interl$arb-merge-inputs inputs st data-size)))
(arb-merge$act0 arb-merge-inputs data-size)))
(defthm interl$out-act0-inactive
(implies (equal (nth 2 inputs) t)
(not (interl$out-act0 inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$arb-merge-inputs
interl$out-act0))))
;; Extract the "out-act1" signal
(defund interl$out-act1 (inputs st data-size)
(b* ((arb-merge-inputs (interl$arb-merge-inputs inputs st data-size)))
(arb-merge$act1 arb-merge-inputs data-size)))
(defthm interl$out-act1-inactive
(implies (equal (nth 2 inputs) t)
(not (interl$out-act1 inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$arb-merge-inputs
interl$out-act1))))
(defthm interl$out-act-mutually-exclusive
(implies (and (interl$valid-st st data-size)
(interl$out-act0 inputs st data-size))
(not (interl$out-act1 inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$valid-st
interl$arb-merge-inputs
interl$out-act0
interl$out-act1))))
;; Extract the "out-act" signal
(defund interl$out-act (inputs st data-size)
(f-or (interl$out-act0 inputs st data-size)
(interl$out-act1 inputs st data-size)))
(defthm interl$out-act-inactive
(implies (equal (nth 2 inputs) t)
(not (interl$out-act inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$out-act))))
;; Extract the inputs for link Q40-L0
(defund interl$q40-l0-inputs (inputs st data-size)
(b* ((in0-act (interl$in0-act inputs st data-size))
(data0-in (interl$data0-in inputs data-size))
(go-signals (nthcdr (+ (interl$data-ins-len data-size)
*interl$select-num*)
inputs))
(q40-l0-go-signals (take *queue40-l$go-num*
(nthcdr *interl$prim-go-num*
go-signals)))
(arb-merge-inputs (interl$arb-merge-inputs inputs st data-size))
(out-act0 (arb-merge$act0 arb-merge-inputs data-size)))
(list* in0-act out-act0
(append data0-in q40-l0-go-signals))))
;; Extract the inputs for link Q40-L1
(defund interl$q40-l1-inputs (inputs st data-size)
(b* ((in1-act (interl$in1-act inputs st data-size))
(data1-in (interl$data1-in inputs data-size))
(go-signals (nthcdr (+ (interl$data-ins-len data-size)
*interl$select-num*)
inputs))
(q40-l1-go-signals (take *queue40-l$go-num*
(nthcdr (+ *interl$prim-go-num*
*queue40-l$go-num*)
go-signals)))
(arb-merge-inputs (interl$arb-merge-inputs inputs st data-size))
(out-act1 (arb-merge$act1 arb-merge-inputs data-size)))
(list* in1-act out-act1
(append data1-in q40-l1-go-signals))))
;; Extract the output data
(defund interl$data-out (inputs st data-size)
(b* ((arb-merge-inputs (interl$arb-merge-inputs inputs st data-size)))
(arb-merge$data-out arb-merge-inputs data-size)))
(defthm len-interl$data-out-1
(implies (interl$st-format st data-size)
(equal (len (interl$data-out inputs st data-size))
data-size))
:hints (("Goal" :in-theory (enable interl$st-format
interl$data-out))))
(defthm len-interl$data-out-2
(implies (interl$valid-st st data-size)
(equal (len (interl$data-out inputs st data-size))
data-size))
:hints (("Goal" :in-theory (enable queue40-l$valid-st=>constraint
interl$valid-st
interl$data-out))))
(defun interl$outputs (inputs st data-size)
(list* (interl$in0-act inputs st data-size)
(interl$in1-act inputs st data-size)
(interl$out-act inputs st data-size)
(interl$data-out inputs st data-size)))
)
;; The value lemma for INTERL
(defthm interl$value
(b* ((inputs (list* full-in0 full-in1 empty-out-
(append data0-in data1-in
(cons select go-signals)))))
(implies (and (interl& netlist data-size)
(true-listp data0-in)
(equal (len data0-in) data-size)
(true-listp data1-in)
(equal (len data1-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *interl$go-num*)
(interl$st-format st data-size))
(equal (se (si 'interl data-size) inputs st netlist)
(interl$outputs inputs st data-size))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(se (si 'interl data-size) inputs st netlist))
:in-theory (e/d (de-rules
interl&
interl*$destructure
interl$st-format
arb-merge$act
interl$arb-merge-inputs
interl$in0-act
interl$in1-act
interl$out-act0
interl$out-act1
interl$out-act
interl$data-out)
(de-module-disabled-rules)))))
;; This function specifies the next state of INTERL.
(defun interl$step (inputs st data-size)
(b* ((q40-l0 (nth *interl$q40-l0* st))
(q40-l1 (nth *interl$q40-l1* st))
(q40-l0-inputs (interl$q40-l0-inputs inputs st data-size))
(q40-l1-inputs (interl$q40-l1-inputs inputs st data-size)))
(list
;; Q40-L0
(queue40-l$step q40-l0-inputs q40-l0 data-size)
;; Q40-L1
(queue40-l$step q40-l1-inputs q40-l1 data-size))))
;; The state lemma for INTERL
(defthm interl$state
(b* ((inputs (list* full-in0 full-in1 empty-out-
(append data0-in data1-in
(cons select go-signals)))))
(implies (and (interl& netlist data-size)
(true-listp data0-in)
(equal (len data0-in) data-size)
(true-listp data1-in)
(equal (len data1-in) data-size)
(true-listp go-signals)
(equal (len go-signals) *interl$go-num*)
(interl$st-format st data-size))
(equal (de (si 'interl data-size) inputs st netlist)
(interl$step inputs st data-size))))
:hints (("Goal"
:do-not-induct t
:expand (:free (inputs data-size)
(de (si 'interl data-size) inputs st netlist))
:in-theory (e/d (de-rules
interl&
interl*$destructure
interl$st-format
interl$data0-in
interl$data1-in
interl$q40-l0-inputs
interl$q40-l1-inputs
interl$arb-merge-inputs
interl$in0-act
interl$in1-act)
(de-module-disabled-rules)))))
(in-theory (disable interl$step))
;; ======================================================================
;; 2. Multi-Step State Lemma
;; Conditions on the inputs
(defund interl$input-format (inputs data-size)
(declare (xargs :guard (and (true-listp inputs)
(natp data-size))))
(b* ((full-in0 (nth 0 inputs))
(full-in1 (nth 1 inputs))
(empty-out- (nth 2 inputs))
(data0-in (interl$data0-in inputs data-size))
(data1-in (interl$data1-in inputs data-size))
(select (nth (interl$data-ins-len data-size) inputs))
(go-signals (nthcdr (+ (interl$data-ins-len data-size)
*interl$select-num*)
inputs)))
(and
(booleanp full-in0)
(booleanp full-in1)
(booleanp empty-out-)
(or (not full-in0) (bvp data0-in))
(or (not full-in1) (bvp data1-in))
(true-listp go-signals)
(= (len go-signals) *interl$go-num*)
(equal inputs
(list* full-in0 full-in1 empty-out-
(append data0-in data1-in (cons select go-signals)))))))
(local
(defthm interl$input-format=>q40-l0$input-format
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(queue40-l$input-format
(interl$q40-l0-inputs inputs st data-size)
(nth *interl$q40-l0* st)
data-size))
:hints (("Goal"
:in-theory (e/d (queue40-l$input-format
queue40-l$in-act
queue40-l$out-act
queue40-l$data-in
arb-merge$act0
interl$input-format
interl$valid-st
interl$q40-l0-inputs
interl$arb-merge-inputs
interl$in0-act)
(nfix
link$st-format))))))
(local
(defthm interl$input-format=>q40-l1$input-format
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(queue40-l$input-format
(interl$q40-l1-inputs inputs st data-size)
(nth *interl$q40-l1* st)
data-size))
:hints (("Goal"
:in-theory (e/d (queue40-l$input-format
queue40-l$in-act
queue40-l$out-act
queue40-l$data-in
arb-merge$act1
interl$input-format
interl$valid-st
interl$q40-l1-inputs
interl$arb-merge-inputs
interl$in1-act)
(nfix
link$st-format))))))
(defthm booleanp-interl$in0-act
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(booleanp (interl$in0-act inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$input-format
interl$valid-st
interl$in0-act)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-interl$in1-act
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(booleanp (interl$in1-act inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$input-format
interl$valid-st
interl$in1-act)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-interl$out0-act
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(booleanp (interl$out-act0 inputs st data-size)))
:hints (("Goal" :in-theory (enable arb-merge$act0
interl$input-format
interl$valid-st
interl$arb-merge-inputs
interl$out-act0
interl$out-act)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-interl$out1-act
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(booleanp (interl$out-act1 inputs st data-size)))
:hints (("Goal" :in-theory (enable arb-merge$act1
interl$input-format
interl$valid-st
interl$arb-merge-inputs
interl$out-act1
interl$out-act)))
:rule-classes (:rewrite :type-prescription))
(defthm booleanp-interl$out-act
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(booleanp (interl$out-act inputs st data-size)))
:hints (("Goal" :in-theory (enable interl$out-act)))
:rule-classes (:rewrite :type-prescription))
(defthm bvp-interl$data-out
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size)
(interl$out-act inputs st data-size))
(bvp (interl$data-out inputs st data-size)))
:hints (("Goal"
:in-theory (enable arb-merge$act0
arb-merge$act1
arb-merge$data0-in
arb-merge$data1-in
arb-merge$data-out
interl$input-format
interl$valid-st
interl$out-act0
interl$out-act1
interl$out-act
interl$arb-merge-inputs
interl$data-out))))
(simulate-lemma interl)
;; ======================================================================
;; 3. Single-Step-Update Property
;; The extraction functions for INTERL
(defund interl$extract0 (st)
(b* ((q40-l0 (nth *interl$q40-l0* st)))
(queue40-l$extract q40-l0)))
(defund interl$extract1 (st)
(b* ((q40-l1 (nth *interl$q40-l1* st)))
(queue40-l$extract q40-l1)))
(defthm interl$extract0-not-empty
(implies (and (interl$out-act0 inputs st data-size)
(interl$valid-st st data-size))
(< 0 (len (interl$extract0 st))))
:hints (("Goal"
:in-theory (e/d (arb-merge$act0
interl$arb-merge-inputs
interl$valid-st
interl$extract0
interl$out-act0)
())))
:rule-classes :linear)
(defthm interl$extract1-not-empty
(implies (and (interl$out-act1 inputs st data-size)
(interl$valid-st st data-size))
(< 0 (len (interl$extract1 st))))
:hints (("Goal"
:in-theory (e/d (arb-merge$act1
interl$arb-merge-inputs
interl$valid-st
interl$extract1
interl$out-act1)
())))
:rule-classes :linear)
;; The extracted next-state functions for INTERL. Note that these functions
;; avoid exploring the internal computation of INTERL.
(defund interl$extracted0-step (inputs st data-size)
(b* ((data (interl$data0-in inputs data-size))
(extracted-st (interl$extract0 st))
(n (1- (len extracted-st))))
(cond
((equal (interl$out-act0 inputs st data-size) t)
(cond
((equal (interl$in0-act inputs st data-size) t)
(cons data (take n extracted-st)))
(t (take n extracted-st))))
(t (cond
((equal (interl$in0-act inputs st data-size) t)
(cons data extracted-st))
(t extracted-st))))))
(defund interl$extracted1-step (inputs st data-size)
(b* ((data (interl$data1-in inputs data-size))
(extracted-st (interl$extract1 st))
(n (1- (len extracted-st))))
(cond
((equal (interl$out-act1 inputs st data-size) t)
(cond
((equal (interl$in1-act inputs st data-size) t)
(cons data (take n extracted-st)))
(t (take n extracted-st))))
(t (cond
((equal (interl$in1-act inputs st data-size) t)
(cons data extracted-st))
(t extracted-st))))))
;; The single-step-update property
(encapsulate
()
(local
(defthm interl$q40-l0-data-in-rewrite
(equal (queue40-l$data-in
(interl$q40-l0-inputs inputs st data-size)
data-size)
(interl$data0-in inputs data-size))
:hints (("Goal"
:in-theory (enable queue40-l$data-in
interl$data0-in
interl$q40-l0-inputs)))))
(local
(defthm interl$q40-l1-data-in-rewrite
(equal (queue40-l$data-in
(interl$q40-l1-inputs inputs st data-size)
data-size)
(interl$data1-in inputs data-size))
:hints (("Goal"
:in-theory (enable queue40-l$data-in
interl$data1-in
interl$q40-l1-inputs)))))
(local
(defthm interl$q40-l0-in-act-rewrite
(equal (queue40-l$in-act (interl$q40-l0-inputs inputs st data-size))
(interl$in0-act inputs st data-size))
:hints (("Goal" :in-theory (enable queue40-l$in-act
interl$in0-act
interl$q40-l0-inputs)))))
(local
(defthm interl$q40-l0-out-act-rewrite
(equal (queue40-l$out-act (interl$q40-l0-inputs inputs st data-size))
(interl$out-act0 inputs st data-size))
:hints (("Goal" :in-theory (enable queue40-l$out-act
interl$out-act0
interl$q40-l0-inputs)))))
(local
(defthm interl$q40-l1-in-act-rewrite
(equal (queue40-l$in-act (interl$q40-l1-inputs inputs st data-size))
(interl$in1-act inputs st data-size))
:hints (("Goal" :in-theory (enable queue40-l$in-act
interl$in1-act
interl$q40-l1-inputs)))))
(local
(defthm interl$q40-l1-out-act-rewrite
(equal (queue40-l$out-act (interl$q40-l1-inputs inputs st data-size))
(interl$out-act1 inputs st data-size))
:hints (("Goal" :in-theory (enable queue40-l$out-act
interl$out-act1
interl$q40-l1-inputs)))))
(defthm interl$extracted-step-correct
(b* ((next-st (interl$step inputs st data-size)))
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(and (equal (interl$extract0 next-st)
(interl$extracted0-step inputs st data-size))
(equal (interl$extract1 next-st)
(interl$extracted1-step inputs st data-size)))))
:hints (("Goal"
:in-theory (e/d (queue40-l$extracted-step
queue40-l$extracted-step
interl$extracted0-step
interl$extracted1-step
interl$valid-st
interl$step
interl$extract0
interl$extract1)
(nthcdr)))))
)
;; ======================================================================
;; 4. Relationship Between the Input and Output Sequences
;; Prove that interl$valid-st is an invariant.
(defthm interl$valid-st-preserved
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size))
(interl$valid-st (interl$step inputs st data-size)
data-size))
:hints (("Goal"
:in-theory (e/d (interl$valid-st
interl$step)
()))))
(encapsulate
()
(local
(defthm interl$data-out-rewrite-1
(implies (and (interl$valid-st st data-size)
(interl$out-act0 inputs st data-size))
(equal (interl$data-out inputs st data-size)
(queue40-l$data-out (nth *interl$q40-l0* st))))
:hints (("Goal"
:in-theory (enable queue40-l$valid-st=>constraint
arb-merge$act0
arb-merge$act1
arb-merge$data0-in
arb-merge$data-out
interl$valid-st
interl$arb-merge-inputs
interl$out-act0
interl$data-out)))))
(local
(defthm interl$data-out-rewrite-2
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size)
(interl$out-act1 inputs st data-size))
(equal (interl$data-out inputs st data-size)
(queue40-l$data-out (nth *interl$q40-l1* st))))
:hints (("Goal"
:in-theory (enable queue40-l$valid-st=>constraint
arb-merge$act0
arb-merge$act1
arb-merge$data1-in
arb-merge$data-out
interl$input-format
interl$valid-st
interl$arb-merge-inputs
interl$out-act1
interl$data-out)))))
(local
(defthm interl$out-act0-rewrite
(equal (interl$out-act0 inputs st data-size)
(queue40-l$out-act (interl$q40-l0-inputs inputs st data-size)))
:hints (("Goal" :in-theory (enable queue40-l$out-act
interl$out-act0
interl$q40-l0-inputs)))))
(local
(defthm interl$out-act1-rewrite
(equal (interl$out-act1 inputs st data-size)
(queue40-l$out-act (interl$q40-l1-inputs inputs st data-size)))
:hints (("Goal" :in-theory (enable queue40-l$out-act
interl$out-act1
interl$q40-l1-inputs)))))
(defthm interl$extract0-lemma
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size)
(interl$out-act0 inputs st data-size))
(equal (list (interl$data-out inputs st data-size))
(nthcdr (1- (len (interl$extract0 st)))
(interl$extract0 st))))
:hints (("Goal"
:use interl$input-format=>q40-l0$input-format
:in-theory (e/d (interl$valid-st
interl$extract0)
(interl$input-format=>q40-l0$input-format)))))
(defthm interl$extract1-lemma
(implies (and (interl$input-format inputs data-size)
(interl$valid-st st data-size)
(interl$out-act1 inputs st data-size))
(equal (list (interl$data-out inputs st data-size))
(nthcdr (1- (len (interl$extract1 st)))
(interl$extract1 st))))
:hints (("Goal"
:use interl$input-format=>q40-l1$input-format
:in-theory (e/d (interl$valid-st
interl$extract1)
(interl$input-format=>q40-l1$input-format)))))
)
;; Extract the accepted input sequences
(seq-gen interl in0 in0-act 0
(interl$data0-in inputs data-size))
(seq-gen interl in1 in1-act 1
(interl$data1-in inputs data-size))
;; Extract the valid output sequence
(seq-gen interl out out-act 2
(interl$data-out inputs st data-size)
:netlist-data (nthcdr 3 outputs))
;; The multi-step input-output relationship
;; Let in0-seq and in1-seq represent two input sequences connected to Q40-L0
;; and Q40-L1, respectively. We might expect the output sequence is any
;; interleaving of in0-seq and in1-seq. More generally, our formalization also
;; takes into account that an initial state of INTERL may contain some valid
;; data, and there can be some valid data remaining in the final state after
;; executing INTERL an arbitrary number of steps. We then prove that for any
;; interleaving x of two data sequences remaining in the final state, the
;; concatenation of x and the output sequence must be a member of (seq0 x
;; seq1); where seq0 is the concatenation of in0-seq and the valid data
;; sequence in Q40-L0 at the intial state, and seq1 is the concatenation of
;; in1-seq and the valid data sequence in Q40-L1 at the intial state.
(progn
(defthm member-append-interleave-1-instance
(implies (and (member (append a b) (interleave y z))
(equal y++x1 (append y x1))
(true-listp x1)
(true-listp z))
(member (append a b x1)
(interleave y++x1 z)))
:hints (("Goal"
:use (:instance member-append-interleave-1
(x (append a b))))))
(defthm member-append-interleave-2-instance
(implies (and (member (append a b) (interleave y z))
(equal z++x1 (append z x1))
(true-listp x1)
(true-listp y))
(member (append a b x1)
(interleave y z++x1)))
:hints (("Goal"
:use (:instance member-append-interleave-2
(x (append a b))))))
(defthmd interl$dataflow-correct
(b* ((extracted0-st (interl$extract0 st))
(extracted1-st (interl$extract1 st))
(final-st (interl$run inputs-seq st data-size n))
(final-extracted0-st (interl$extract0 final-st))
(final-extracted1-st (interl$extract1 final-st)))
(implies
(and (interl$input-format-n inputs-seq data-size n)
(interl$valid-st st data-size)
(member x (interleave final-extracted0-st final-extracted1-st)))
(member
(append x (interl$out-seq inputs-seq st data-size n))
(interleave (append (interl$in0-seq inputs-seq st data-size n)
extracted0-st)
(append (interl$in1-seq inputs-seq st data-size n)
extracted1-st)))))
:hints (("Goal" :in-theory (enable member-of-true-list-list-is-true-list
interl$out-act
interl$extracted0-step
interl$extracted1-step))))
(defthmd interl$functionally-correct
(b* ((extracted0-st (interl$extract0 st))
(extracted1-st (interl$extract1 st))
(final-st (de-n (si 'interl data-size) inputs-seq st netlist n))
(final-extracted0-st (interl$extract0 final-st))
(final-extracted1-st (interl$extract1 final-st)))
(implies
(and (interl& netlist data-size)
(interl$input-format-n inputs-seq data-size n)
(interl$valid-st st data-size)
(member x (interleave final-extracted0-st final-extracted1-st)))
(member
(append x (interl$out-seq-netlist
inputs-seq st netlist data-size n))
(interleave (append (interl$in0-seq-netlist
inputs-seq st netlist data-size n)
extracted0-st)
(append (interl$in1-seq-netlist
inputs-seq st netlist data-size n)
extracted1-st)))))
:hints (("Goal"
:use interl$dataflow-correct
:in-theory (enable interl$valid-st=>st-format
interl$de-n))))
)
|