1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
|
;; Copyright (C) 2018, Regents of the University of Texas
;; Written by Cuong Chau (derived from the FM9001 work of Brock and Hunt)
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; The ACL2 source code for the FM9001 work is available at
;; https://github.com/acl2/acl2/tree/master/books/projects/fm9001.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; May 2019
(in-package "ADE")
(include-book "utils")
(include-book "../../assoc-eq-value")
(include-book "../../macros")
;; ======================================================================
(defmacro netlist-hyps (netlist &rest modules)
(if (atom modules)
nil
(if (atom (cdr modules))
`(equal (assoc ',(car modules) ,netlist)
(car ,(var-to-const (car modules))))
`(netlist-hyps (delete-to-eq ',(car modules) ,netlist)
,@(cdr modules)))))
(defun b-to-f (body)
(cond ((atom body) nil)
((consp (car body))
(cons (b-to-f (car body))
(b-to-f (cdr body))))
((symbolp (car body))
(let ((sym-name (symbol-name (car body))))
(cond ((and (<= 2 (length sym-name))
(equal (subseq sym-name 0 2)
"B-"))
(cons (strings-to-symbol
"F-"
(subseq sym-name 2 (length sym-name)))
(b-to-f (cdr body))))
((equal sym-name "AO2")
(cons (strings-to-symbol "F$" sym-name)
(b-to-f (cdr body))))
(t
(cons (cond ((equal (car body) t) T)
((equal (car body) nil) NIL)
(t (car body)))
(b-to-f (cdr body)))))))
(t (cons (car body)
(b-to-f (cdr body))))))
(defun fn-to-module-outs (body)
(cond ((atom body) nil)
((consp (car body))
(append (fn-to-module-outs (car body))
(fn-to-module-outs (cdr body))))
((equal (car body) 'list)
(cdr body))
(t (fn-to-module-outs (cdr body)))))
(defun fn-to-module-body (i body)
(cond ((atom body) nil)
((consp (car body))
(cons (fn-to-module-body i (car body))
(fn-to-module-body (1+ i) (cdr body))))
((equal (car body) 'list)
nil)
((or (equal (car body) 'let)
(equal (car body) 'let*)
(equal (car body) 'b*))
(append (fn-to-module-body i (cadr body))
(fn-to-module-body (+ i (len (cadr body)))
(caddr body))))
((symbolp (car body))
(cond
((not (cadr body))
(list (strings-to-symbol "G" (str::nat-to-dec-string i))
(list (car body))
'vss
()))
((equal (cadr body) t)
(list (strings-to-symbol "G" (str::nat-to-dec-string i))
(list (car body))
'vdd
()))
((symbolp (cadr body))
(list (strings-to-symbol "G" (str::nat-to-dec-string i))
(list (car body))
'wire
(list (cadr body))))
(t (list (strings-to-symbol "G" (str::nat-to-dec-string i))
(list (car body))
(caadr body)
(cdadr body)))))
(t nil)))
(defun flatten-expr (var i expr)
(declare (xargs :guard (and (symbolp var)
(natp i))))
(cond ((atom expr) nil)
(t (cons (if (consp (car expr))
(si var i)
(car expr))
(flatten-expr var (1+ i) (cdr expr))))))
(defun flatten-binding (var i body outermost-p)
(cond
((atom body) nil)
((equal (car body) 'list)
body)
((consp (car body))
(append (flatten-binding var i (car body) outermost-p)
(flatten-binding var (1+ i) (cdr body) outermost-p)))
((or (equal (car body) 'let)
(equal (car body) 'let*)
(equal (car body) 'b*))
(list (car body)
(flatten-binding var 0 (cadr body) t)
(flatten-binding var 0 (caddr body) t)))
((symbolp (car body))
(b* ((var_i (si var i))
(sym (car body))
(sym-name (symbol-name sym)))
(cond
((or (and (<= 2 (length sym-name))
(equal (subseq sym-name 0 2)
"B-"))
(equal sym-name "AO2"))
(append (flatten-binding (if outermost-p var var_i)
0 (cdr body) nil)
(list
(cons (if outermost-p var var_i)
`((,sym ,@(flatten-expr (if outermost-p var var_i)
0
(cdr body))))))))
(outermost-p
(if (symbolp (cadr body))
(list body)
(flatten-binding sym 0 (cdr body) outermost-p)))
(t (flatten-binding var (1+ i) (cdr body) outermost-p)))))
(t nil)))
(defmacro fn-to-module (name ins declare body)
(b* ((f$name (strings-to-symbol "F$" (symbol-name name)))
(netlist-const (var-to-const name))
(netlist-okp (strings-to-symbol (symbol-name name) "-OKP"))
(netlist-properp (strings-to-symbol (symbol-name name)
"&"))
(value-lemma (strings-to-symbol (symbol-name name) "$VALUE"))
(boolp-value-lemma (strings-to-symbol (symbol-name f$name)
"="
(symbol-name name)))
(boolp-ins (pairlis$ (make-list (len ins)
:initial-element 'booleanp)
(pairlis$ ins nil)))
(outs (fn-to-module-outs body)))
`(progn
(defun ,name ,ins
,declare
,body)
(defun ,f$name ,ins
,declare
,(b-to-f body))
(defconst ,netlist-const
'((,name
,ins
,(if (atom outs) (list 'x) outs)
()
,(fn-to-module-body 0 (flatten-binding 'x 0 body t)))))
(defthmd ,netlist-okp
(and (net-syntax-okp ,netlist-const)
(net-arity-okp ,netlist-const)))
(defund ,netlist-properp (netlist)
(declare (xargs :guard (alistp netlist)))
(netlist-hyps netlist ,name))
(defthm ,value-lemma
(implies (,netlist-properp netlist)
(equal (se ',name (list ,@ins) st netlist)
,(if (atom outs)
`(list (,f$name ,@ins))
`(,f$name ,@ins))))
:hints (("Goal"
:expand (se ',name (list ,@ins) st netlist)
:in-theory (enable de-rules ,netlist-properp))))
(defthm ,boolp-value-lemma
(implies (and ,@boolp-ins)
(equal (,f$name ,@ins)
(,name ,@ins)))
:hints (("Goal" :in-theory (disable b-gates))))
(in-theory (disable ,f$name ,name))
)))
;; ======================================================================
;; Define both vector (V_) and natural (N_) forms of the states.
(defun add-prefix-to-name (prefix name)
(declare (xargs :guard (and (stringp prefix)
(symbolp name))))
(intern$ (string-append prefix (symbol-name name))
"ADE"))
(defun add-prefix-to-names (prefix names)
(declare (xargs :guard (and (stringp prefix)
(symbol-listp names))))
(if (atom names)
nil
(cons (add-prefix-to-name prefix (car names))
(add-prefix-to-names prefix (cdr names)))))
(defun add-prefix-to-state-names (prefix control-states)
(declare (xargs :guard (and (stringp prefix)
(symbol-alistp control-states))))
(if (atom control-states)
nil
(cons (add-prefix-to-name prefix (caar control-states))
(add-prefix-to-state-names prefix (cdr control-states)))))
(defun define-control-states (control-states)
(declare (xargs :guard (symbol-alistp control-states)))
(if (atom control-states)
nil
(b* ((name (caar control-states))
(val (cdar control-states))
(vector-state-name (string-append "V_" (symbol-name name)))
(natural-state-name (string-append "N_" (symbol-name name)))
(vn (intern$ vector-state-name "ADE"))
(nn (intern$ natural-state-name "ADE"))
(bvp-vn-lemma (strings-to-symbol "BVP-" vector-state-name))
(len-vn-lemma (strings-to-symbol "LEN-" vector-state-name)))
(append `((defun ,vn ()
(declare (xargs :guard t))
,val)
(defthm ,bvp-vn-lemma
(bvp (,vn))
:rule-classes (:rewrite :type-prescription))
(defthmd ,len-vn-lemma
(equal (len (,vn)) 5))
(defun ,nn ()
(declare (xargs :guard t))
(v-to-nat ,val)))
(define-control-states (cdr control-states))))))
;; Define an accessor for each entry in the control vector.
(defun define-control-vector-accessors (i control-template)
(if (atom control-template)
nil
(b* ((field (caar control-template))
(type/size (cadar control-template)))
(if (equal type/size 'b)
(cons `(defun ,field (cntl-vector)
(declare (xargs :guard (true-listp cntl-vector)))
(nth ,i cntl-vector))
(define-control-vector-accessors
(1+ i)
(cdr control-template)))
(cons `(defun ,field (cntl-vector)
(declare (xargs :guard (true-listp cntl-vector)))
(subseq-list cntl-vector ,i ,(+ i type/size)))
(define-control-vector-accessors
(+ i type/size)
(cdr control-template)))))))
;; CONTROL-LET
;; A macro for a LET that extracts and computes necessary fields and flags.
(defun control-let (body)
(declare (xargs :guard t))
`(B* ((A-IMMEDIATE-P (A-IMMEDIATE-P I-REG))
(MODE-A (MODE-A I-REG))
(?RN-A (RN-A I-REG))
(MODE-B (MODE-B I-REG))
(?RN-B (RN-B I-REG))
(SET-FLAGS (SET-FLAGS I-REG))
(STORE-CC (STORE-CC I-REG))
(OP-CODE (OP-CODE I-REG)))
(B* ((A-IMMEDIATE-P- (NOT* A-IMMEDIATE-P))
(STORE (STORE-RESULTP STORE-CC FLAGS))
(?SET-SOME-FLAGS (SET-SOME-FLAGS SET-FLAGS))
(DIRECT-A (OR* A-IMMEDIATE-P (REG-DIRECT-P MODE-A)))
(DIRECT-B (REG-DIRECT-P MODE-B))
(UNARY (UNARY-OP-CODE-P OP-CODE))
(PRE-DEC-A (PRE-DEC-P MODE-A))
(POST-INC-A (POST-INC-P MODE-A))
(PRE-DEC-B (PRE-DEC-P MODE-B))
(POST-INC-B (POST-INC-P MODE-B))
(?C (C-FLAG FLAGS))
(?ALL-T-REGS-ADDRESS (EQUAL REGS-ADDRESS *v1111*)))
(B* ((?STORE- (NOT* STORE))
(?DIRECT-A- (NOT* DIRECT-A))
(?DIRECT-B- (NOT* DIRECT-B))
(?UNARY- (NOT* UNARY))
(?SIDE-EFFECT-A (AND* A-IMMEDIATE-P-
(OR* PRE-DEC-A POST-INC-A)))
(?SIDE-EFFECT-B (OR* PRE-DEC-B POST-INC-B)))
,body))))
;; Use the *STATE-TABLE* to build a CV_state function for each state. This is
;; the function that creates the control-vector for each state. Note that the
;; reset states RESET0 and RESET1 are constants, and in these cases we don't
;; include the hypothesis.
(defun build-st (template)
(if (atom template)
nil
(if (natp (cadar template))
`(append ,(caddar template) ,(build-st (cdr template)))
`(cons ,(caddar template) ,(build-st (cdr template))))))
(defun cv-lemma-concl (cv-name template control-arglist)
(if (atom template)
nil
(b* ((field-tuple (car template))
(field-name (car field-tuple))
(field-val (caddr field-tuple)))
(cons `(equal (,field-name (,cv-name ,@control-arglist))
,field-val)
(cv-lemma-concl cv-name (cdr template) control-arglist)))))
(defun update-template (update-fields control-template)
(if (atom update-fields)
control-template
(b* ((field (car update-fields))
(field-name (if (atom field)
field
(car field)))
(field-type/default (assoc-eq-value field-name control-template))
(field-type/val (if (atom field)
(list (car field-type/default)
(not (cadr field-type/default)))
(list (car field-type/default)
(cadr field))))
(new-template (update-alist field-name field-type/val
control-template)))
(update-template (cdr update-fields) new-template))))
(defun add-prefix-and-suffix-to-name (prefix suffix name)
(declare (xargs :guard (and (stringp prefix)
(stringp suffix)
(symbolp name))))
(intern$ (concatenate 'string prefix (symbol-name name) suffix)
"ADE"))
(defun add-prefix-and-suffix-to-state-names (prefix suffix states)
(declare (xargs :guard (and (stringp prefix)
(stringp suffix)
(symbol-alistp states))))
(if (atom states)
nil
(cons (add-prefix-and-suffix-to-name prefix suffix (caar states))
(add-prefix-and-suffix-to-state-names prefix suffix (cdr states)))))
(defun define-control-vector-functions (state-table
control-template
control-arglist)
(if (atom state-table)
nil
(b* ((state-trans (car state-table))
(state-name (car state-trans))
(cv-name (add-prefix-to-name "CV_" state-name))
(bvp-cv-name (add-prefix-to-name "BVP-" cv-name))
(cv-lemma-name (add-prefix-and-suffix-to-name "CV_"
"$DESTRUCTURE"
state-name))
(cntl-state-name 'major-state)
(cntl-state-type/default
(assoc-eq-value cntl-state-name control-template))
(cntl-state-type/val
(list (car cntl-state-type/default)
(list (add-prefix-to-name "V_" state-name))))
(new-template (update-alist cntl-state-name cntl-state-type/val
control-template))
(updated-template
(update-template (cddr state-trans) ;; skip the next-state name
new-template)))
(append `((defun ,cv-name ,control-arglist
(declare (xargs :guard (and (true-listp regs-address)
(true-listp i-reg)
(true-listp flags)
(true-listp pc-reg)))
(ignorable ,@control-arglist))
,(control-let (build-st updated-template)))
(defthm ,bvp-cv-name
(implies (cv-hyps ,@control-arglist)
(bvp (,cv-name ,@control-arglist)))
:hints (("Goal" :in-theory (enable bvp binary-or*)))
:rule-classes (:rewrite :type-prescription))
(defthmd ,cv-lemma-name
,(control-let
`(implies ,(if (member state-name '(reset0 reset1))
t
`(cv-hyps ,@control-arglist))
(and ,@(cv-lemma-concl cv-name
updated-template
control-arglist))))
:hints (("Goal" :in-theory (enable control-vector-accessors)))))
(define-control-vector-functions (cdr state-table)
control-template
control-arglist)))))
;; ======================================================================
;; The NEXT-STATE module, which takes the current decoded state
;; and creates a decoded version of the next state.
(defun bind-values (st i l)
(declare (xargs :guard (natp i)))
(if (atom st)
nil
(cons `(,(car st) (nth ,i ,l))
(bind-values (cdr st) (1+ i) l))))
(defun wire-occs (st s i)
(declare (xargs :guard (and (symbolp s)
(natp i))))
(if (atom st)
nil
(cons `(list ',(strings-to-symbol "R" (str::nat-to-dec-string i))
',(list (car st))
'wire
(list (si ',s ,i)))
(wire-occs (cdr st) s (1+ i)))))
(defun b-and-expr (expr)
(declare (xargs :guard (and (consp expr)
(<= (len expr) 5))))
(case (len expr)
(1 expr)
(2 (list (cons 'B-AND expr)))
(3 (list (cons 'B-AND3 expr)))
(4 (list (cons 'B-AND4 expr)))
(5 (list (list 'B-NOT (cons 'B-NAND5 expr))))
(otherwise nil)))
(defun unwind (tree expr)
(cond
((symbolp tree) (list (cons tree (b-and-expr expr))))
((equal (car tree) 'IF)
(append
(unwind (caddr tree) (cons (cadr tree) expr))
(unwind (cadddr tree) (cons `(B-NOT ,(cadr tree)) expr))))
(t (er hard 'unwind
"Error when unwinding ~x0."
tree))))
(defun unwind-next-st (state-table)
(if (atom state-table)
nil
(b* ((state-trans (car state-table))
(st (car state-trans))
(next-st (cadr state-trans)))
(append (unwind next-st (list st))
(unwind-next-st (cdr state-table))))))
(defun collect-from-alist (x alist)
(cond ((atom alist) nil)
((equal x (caar alist))
(append (cdar alist)
(collect-from-alist x (cdr alist))))
(t (collect-from-alist x (cdr alist)))))
(defun compute-next-st (st alist)
(if (atom st)
nil
(b* ((sub-st (car st))
(collection (collect-from-alist sub-st alist))
(next-sub-st (add-prefix-to-name "NEXT-" sub-st)))
(cons
(case (len collection)
(0 (cons next-sub-st '(nil)))
(1 (cons next-sub-st collection))
(2 (list next-sub-st (cons 'B-OR collection)))
(3 (list next-sub-st (cons 'B-OR3 collection)))
(4 (list next-sub-st (cons 'B-OR4 collection)))
(5 (list next-sub-st (list 'B-NOT (cons 'B-NOR5 collection))))
(6 (list next-sub-st (list 'B-NOT (cons 'B-NOR6 collection))))
(7 (list next-sub-st (list 'B-NAND
(cons 'B-NOR4 (take 4 collection))
(cons 'B-NOR3 (nthcdr 4 collection)))))
(otherwise (er hard 'compute-next-st
"COMPUTE-NEXT-ST error")))
(compute-next-st (cdr st) alist)))))
(defun define-next-state (state-table)
(b* ((state-names (strip-cars state-table))
(next-st (add-prefix-to-names "NEXT-" state-names))
(unwinded-next-st (unwind-next-st state-table))
(spec (compute-next-st state-names unwinded-next-st)))
`((defun next-state (decoded-state
store set-some-flags
unary direct-a direct-b
side-effect-a side-effect-b
all-t-regs-address
dtack- hold-)
(declare (xargs :guard (true-listp decoded-state)))
(b* ,(append (bind-values state-names 0 'decoded-state)
spec)
(list ,@next-st)))
(defun f$next-state (decoded-state
store set-some-flags
unary direct-a direct-b
side-effect-a side-effect-b
all-t-regs-address
dtack- hold-)
(declare (xargs :guard (true-listp decoded-state)))
(b* ,(append (bind-values state-names 0 'decoded-state)
(b-to-f spec))
(list ,@next-st)))
(defthm f$next-state=next-state
(implies (and (bvp decoded-state)
(booleanp store) (booleanp set-some-flags)
(booleanp unary) (booleanp direct-a)
(booleanp direct-b)
(booleanp side-effect-a) (booleanp side-effect-b)
(booleanp all-t-regs-address)
(booleanp dtack-) (booleanp hold-))
(equal (f$next-state decoded-state
store set-some-flags
unary direct-a direct-b
side-effect-a side-effect-b
all-t-regs-address
dtack- hold-)
(next-state decoded-state
store set-some-flags
unary direct-a direct-b
side-effect-a side-effect-b
all-t-regs-address
dtack- hold-)))
:hints (("Goal" :in-theory (disable b-gates))))
(in-theory (disable f$next-state next-state))
(defun next-state* ()
(declare (xargs :guard t))
(list
'next-state
(append (sis 's 0 32)
'(store set-some-flags
unary direct-a direct-b
side-effect-a side-effect-b
all-t-regs-address
dtack- hold-))
',next-st
()
(append (list ,@(wire-occs state-names 's 0))
',(fn-to-module-body 0 (flatten-binding 'x 0 spec t)))))
(defund next-state& (netlist)
(declare (xargs :guard (alistp netlist)))
(equal (assoc 'next-state netlist)
(next-state*)))
(defun next-state$netlist ()
(declare (xargs :guard t))
(list (next-state*)))
(defthmd next-state$netlist-okp
(and (net-syntax-okp (next-state$netlist))
(net-arity-okp (next-state$netlist))))
)))
;; ======================================================================
(defun wire-occs-from-decoded-state (st i)
(declare (xargs :guard (and (symbol-listp st)
(natp i))))
(if (atom st)
nil
(cons `(list ',(strings-to-symbol "G-" (symbol-name (car st)))
',(list (car st))
'wire
(list (si 'DECODED-STATE ,i)))
(wire-occs-from-decoded-state (cdr st) (1+ i)))))
(defun translate-b-fns (form)
(if (symbolp form)
form
(case (car form)
(b-and (cons 'AND* (list (translate-b-fns (cadr form))
(translate-b-fns (caddr form)))))
(b-or (cons 'OR* (list (translate-b-fns (cadr form))
(translate-b-fns (caddr form)))))
(b-not (cons 'NOT* (list (translate-b-fns (cadr form)))))
(otherwise (er hard 'translate-b-fns
"Error in (translate-b-fns ~x0)."
form)))))
(defun make-if-tree (tree control-arglist)
(cond ((symbolp tree) `(,(add-prefix-to-name "CV_" tree)
,@control-arglist))
((and (consp tree) (equal (car tree) 'IF))
`(IF* ,(translate-b-fns (cadr tree))
,(make-if-tree (caddr tree) control-arglist)
,(make-if-tree (cadddr tree) control-arglist)))
(t (er hard 'make-if-tree
"Error in (make-if-tree ~x0)."
tree))))
;; Write a lemma for the next control-state for each state in terms of the CV
;; functions.
(defun next-cntl-state-lemmas (state-table control-arglist)
(if (atom state-table)
nil
(b* ((state-trans (car state-table))
(st (car state-trans))
(v-st (add-prefix-to-name "V_" st))
(next-st (cadr state-trans)))
(cons
`(DEFTHM ,(add-prefix-to-name "NEXT-CNTL-STATE$" st)
(IMPLIES (AND (EQUAL RESET- T)
(CV-HYPS RW- REGS-ADDRESS I-REG FLAGS PC-REG))
(EQUAL (NEXT-CNTL-STATE RESET- DTACK- HOLD- RW- (,v-st)
I-REG FLAGS PC-REG REGS-ADDRESS)
,(control-let (make-if-tree next-st
control-arglist))))
:HINTS (("GOAL"
:IN-THEORY (ENABLE NEXT-CNTL-STATE
NEXT-STATE
CV
BINARY-AND* BINARY-OR*
CV-STATES))))
(next-cntl-state-lemmas (cdr state-table) control-arglist)))))
(defun generate-next-cntl-state-lemmas (state-table control-arglist)
`(PROGN ,@(next-cntl-state-lemmas state-table control-arglist)))
;; ======================================================================
(defund bind-signals-to-val (signals val)
(declare (xargs :guard t))
(if (atom signals)
nil
(cons `(equal ,(car signals) ,val)
(bind-signals-to-val (cdr signals) val))))
;; This function generates module's state lemmas for each set of values of (GO)
;; SIGNALS. The sets of SIGNALS' values are computed from two variables
;; HIGH-SIGNALS-SET and SIGNALS. Each element of HIGH-SIGNALS-SET is a set of
;; signals that have value T; the other signals not in that set but in SIGNALS
;; will have value NIL.
(define module$state-interleavings-gen (generator
&key
(suffix '"")
(hyps 't)
(signals 'nil)
(high-signals-set 'nil)
(enable 'nil)
(disable 'nil))
:mode :program
(if (atom high-signals-set)
'(progn)
(b* ((suffix (if (natp suffix) (str::nat-to-dec-string suffix) suffix))
(new-suffix (concatenate 'string
suffix
"-"
(str::nat-to-dec-string (len high-signals-set))))
(high-signals (car high-signals-set))
(low-signals (remove-lst high-signals signals))
(signals-hyps (append (bind-signals-to-val high-signals t)
(bind-signals-to-val low-signals nil)))
(new-hyps (append hyps signals-hyps)))
(append (module$state-interleavings-gen
generator
:suffix suffix
:hyps hyps
:signals signals
:high-signals-set (cdr high-signals-set)
:enable enable
:disable disable)
`((make-event
(,generator
state :suffix ,new-suffix
:hyps ',new-hyps
:enable ',enable :disable ',disable)))))))
;; This macro will call the above function to generate module's state lemmas
;; for all possible sets of values of (GO) SIGNALS (It might exclude the set of
;; all NIL values, depending on the value of variable POWERSETP).
(defmacro module$state-interleavings (generator
powersetp
&key
(suffix '"")
(hyps 't)
(signals 'nil)
(enable 'nil)
(disable 'nil))
(module$state-interleavings-gen
generator
:suffix suffix
:hyps hyps
:signals signals
:high-signals-set (if powersetp
(powerset signals)
(no-empty-powerset signals))
:enable enable
:disable disable))
;; ======================================================================
;; ST-TRANS-FN generates (1) condition functions on GO signals' values based on
;; their interleavings, and (2) functions that counts the number of DE steps to
;; be executed corresponding to each interleaving of GO signals.
(defun idx->car-cdr (n l)
(declare (xargs :guard (natp n)))
(if (zp n)
`(car ,l)
(idx->car-cdr (1- n) `(cdr ,l))))
(defun go-gen1 (signals x flag)
(declare (xargs :guard t))
(cond ((not signals) nil)
((atom signals)
`((equal (,signals ,x) ,flag)))
(t (cons `(equal (,(car signals) ,x) ,flag)
(go-gen1 (cdr signals) x flag)))))
(defun remove-lst-lst (x y)
(declare (xargs :guard (true-list-listp y)))
(if (atom y)
nil
(cons (remove-lst x (car y))
(remove-lst-lst x (cdr y)))))
(defun remove-len-<-2 (l)
(declare (xargs :guard t))
(if (atom l)
nil
(if (< (len (car l)) 2)
(remove-len-<-2 (cdr l))
(cons (car l) (remove-len-<-2 (cdr l))))))
(defun go-gen (n x l independ-lst)
(declare (xargs :guard (and (natp n)
(true-list-listp independ-lst))))
(if (atom l)
nil
(b* ((removed-lst (if (atom (car l))
(list (car l))
(car l)))
(independs (remove-lst removed-lst (car independ-lst)))
(new-independ-lst
(remove-len-<-2 (remove-lst-lst removed-lst independ-lst))))
(append (go-gen1 (car l) (idx->car-cdr n x) t)
(if (and (consp independs)
(< (len independs) (len (car independ-lst))))
(go-gen1 independs (idx->car-cdr n x) nil)
nil)
(go-gen (1+ n) x (cdr l) new-independ-lst)))))
(defun st-trans-gen (name st-trans-rules n x l independ-lst)
(declare (xargs :guard (and (symbolp name)
(natp n)
(true-list-listp independ-lst))))
(if (atom l)
nil
(b* ((st-trans (strings-to-symbol (symbol-name name)
"$ST-TRANS-"
(str::nat-to-dec-string n)))
(st-trans->numsteps (strings-to-symbol "*"
(symbol-name name)
"$ST-TRANS-"
(str::nat-to-dec-string n)
"->NUMSTEPS*")))
(append
`((defund ,st-trans (,x)
(declare (xargs :guard (true-list-listp ,x)))
(and ,@(go-gen 0 x (car l) independ-lst)))
(add-to-ruleset ,st-trans-rules '(,st-trans))
(defconst ,st-trans->numsteps ,(len (car l))))
(st-trans-gen name st-trans-rules (1+ n) x (cdr l) independ-lst)))))
(defun st-trans-lst (name n x)
(declare (xargs :guard (and (symbolp name)
(natp n))))
(if (zp n)
nil
(b* ((st-trans (strings-to-symbol (symbol-name name)
"$ST-TRANS-"
(str::nat-to-dec-string (1- n)))))
(cons `(,st-trans ,x)
(st-trans-lst name (1- n) x)))))
(defun st-trans->numsteps-lst (name n x)
(declare (xargs :guard (and (symbolp name)
(natp n))))
(if (zp n)
nil
(b* ((st-trans (strings-to-symbol (symbol-name name)
"$ST-TRANS-"
(str::nat-to-dec-string (1- n))))
(st-trans->numsteps (strings-to-symbol "*"
(symbol-name name)
"$ST-TRANS-"
(str::nat-to-dec-string (1- n))
"->NUMSTEPS*")))
(cons `((,st-trans ,x) ,st-trans->numsteps)
(st-trans->numsteps-lst name (1- n) x)))))
(defun st-trans-fn (name interleavings independ-lst)
(declare (xargs :guard (and (symbolp name)
(true-list-listp independ-lst))))
(b* ((st-trans (strings-to-symbol (symbol-name name)
"$ST-TRANS"))
(st-trans-n (strings-to-symbol (symbol-name name)
"$ST-TRANS-N"))
(open-st-trans-n-zp (strings-to-symbol "OPEN-"
(symbol-name name)
"$ST-TRANS-N-ZP"))
(open-st-trans-n (strings-to-symbol "OPEN-"
(symbol-name name)
"$ST-TRANS-N"))
(st-trans-plus (strings-to-symbol (symbol-name name)
"$ST-TRANS-PLUS"))
(st-trans->numsteps (strings-to-symbol (symbol-name name)
"$ST-TRANS->NUMSTEPS"))
(st-trans-n->numsteps (strings-to-symbol (symbol-name name)
"$ST-TRANS-N->NUMSTEPS"))
(open-st-trans-n->numsteps-zp
(strings-to-symbol "OPEN-"
(symbol-name name)
"$ST-TRANS-N->NUMSTEPS-ZP"))
(open-st-trans-n->numsteps
(strings-to-symbol "OPEN-"
(symbol-name name)
"$ST-TRANS-N->NUMSTEPS"))
(st-trans-n->numsteps-plus
(strings-to-symbol (symbol-name name)
"$ST-TRANS-N->NUMSTEPS-PLUS"))
(st-trans-rules (strings-to-symbol (symbol-name name)
"$ST-TRANS-RULES"))
(inputs-seq 'inputs-seq))
`(progn
(def-ruleset ,st-trans-rules
'())
,@(st-trans-gen name st-trans-rules
0 inputs-seq interleavings independ-lst)
(defund ,st-trans (,inputs-seq)
(declare (xargs :guard (true-list-listp ,inputs-seq)))
(or ,@(rev
(st-trans-lst name (len interleavings) inputs-seq))))
(defund ,st-trans->numsteps (,inputs-seq)
(declare (xargs :guard (true-list-listp ,inputs-seq)))
(cond
,@(rev
(st-trans->numsteps-lst name (len interleavings)
inputs-seq))
(t 0)))
(add-to-ruleset ,st-trans-rules '(,st-trans
,st-trans->numsteps))
(defun ,st-trans-n (,inputs-seq n)
(declare (xargs :measure (acl2-count n)
:guard (and (true-list-listp ,inputs-seq)
(natp n))))
(if (zp n)
t
(and (,st-trans ,inputs-seq)
(,st-trans-n
(nthcdr (,st-trans->numsteps ,inputs-seq) ,inputs-seq)
(1- n)))))
(defopener ,open-st-trans-n-zp
(,st-trans-n ,inputs-seq n)
:hyp (zp n)
:hints (("Goal"
:in-theory (theory 'minimal-theory)
:expand (,st-trans-n ,inputs-seq n))))
(defopener ,open-st-trans-n
(,st-trans-n ,inputs-seq n)
:hyp (not (zp n))
:hints (("Goal"
:in-theory (theory 'minimal-theory)
:expand (,st-trans-n ,inputs-seq n))))
(defun ,st-trans-n->numsteps (,inputs-seq n)
(declare (xargs :guard (and (true-list-listp ,inputs-seq)
(natp n))))
(if (zp n)
0
(b* ((numsteps (,st-trans->numsteps ,inputs-seq)))
(+ numsteps
(,st-trans-n->numsteps (nthcdr numsteps ,inputs-seq)
(1- n))))))
(defopener ,open-st-trans-n->numsteps-zp
(,st-trans-n->numsteps ,inputs-seq n)
:hyp (zp n)
:hints (("Goal"
:in-theory (theory 'minimal-theory)
:expand (,st-trans-n->numsteps ,inputs-seq n))))
(defopener ,open-st-trans-n->numsteps
(,st-trans-n->numsteps ,inputs-seq n)
:hyp (not (zp n))
:hints (("Goal"
:in-theory (theory 'minimal-theory)
:expand (,st-trans-n->numsteps ,inputs-seq n))))
(defthm ,st-trans-plus
(implies (and (natp m)
(natp n))
(equal (,st-trans-n ,inputs-seq (+ m n))
(and (,st-trans-n ,inputs-seq m)
(,st-trans-n
(nthcdr (,st-trans-n->numsteps ,inputs-seq m)
,inputs-seq)
n)))))
(defthm ,st-trans-n->numsteps-plus
(implies (and (natp m)
(natp n))
(equal (,st-trans-n->numsteps ,inputs-seq (+ m n))
(+ (,st-trans-n->numsteps ,inputs-seq m)
(,st-trans-n->numsteps
(nthcdr (,st-trans-n->numsteps ,inputs-seq m)
,inputs-seq)
n)))))
(in-theory (disable ,st-trans-n
,st-trans-n->numsteps))
)))
|