1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
;; Copyright (C) 2017, Regents of the University of Texas
;; Written by Cuong Chau
;; License: A 3-clause BSD license. See the LICENSE file distributed with
;; ACL2.
;; Cuong Chau <ckcuong@cs.utexas.edu>
;; September 2018
(in-package "ADE")
(include-book "std/lists/take" :dir :system)
(include-book "std/util/bstar" :dir :system)
;; ======================================================================
;; BINARY-AND*
(defun binary-and* (x y)
(declare (xargs :guard t))
(if x y nil))
(defthm booleanp-binary-and*
(implies (booleanp y)
(booleanp (binary-and* x y)))
:rule-classes :type-prescription)
(in-theory (disable binary-and*))
(defund and*-macro (x)
(declare (xargs :guard t))
(cond ((atom x)
t)
((atom (cdr x))
(car x))
(t
`(binary-and* ,(car x)
,(and*-macro (cdr x))))))
(defmacro and* (&rest args)
(and*-macro args))
;; BINARY-OR*
(defun binary-or* (x y)
(declare (xargs :guard t))
(if x x y))
(defthm booleanp-binary-or*
(implies (and (booleanp x)
(booleanp y))
(booleanp (binary-or* x y)))
:rule-classes :type-prescription)
(in-theory (disable binary-or*))
(defund or*-macro (x)
(declare (xargs :guard t))
(cond ((atom x)
nil)
((atom (cdr x))
(car x))
(t
`(binary-or* ,(car x)
,(or*-macro (cdr x))))))
(defmacro or* (&rest args)
(or*-macro args))
;; NOT*
(defun not* (x)
(declare (xargs :guard t))
(not x))
(defthm booleanp-not*
(booleanp (not* x))
:rule-classes :type-prescription)
(in-theory (disable not*))
;; ======================================================================
;; Shuffle two lists
(defun insert (x i l)
(declare (xargs :guard (natp i)))
(cond
((atom l)
(list x))
((zp i)
(cons x l))
(t (cons (car l)
(insert x (1- i) (cdr l))))))
(defthm true-listp-insert
(implies (true-listp l)
(true-listp (insert x i l)))
:rule-classes :type-prescription)
(in-theory (disable insert))
(defun insert-up-to-i (x i l)
(declare (xargs :guard (natp i)))
(if (zp i)
(list (insert x i l))
(cons (insert x i l)
(insert-up-to-i x (1- i) l))))
(defthm true-list-listp-insert-up-to-i
(implies (true-listp l)
(true-list-listp (insert-up-to-i x i l)))
:rule-classes :type-prescription)
(in-theory (disable insert-up-to-i))
(defund cons-or-append (x y)
(declare (xargs :guard t))
(if (atom x)
(if (atom y)
(cons x (list y))
(cons x y))
(if (atom y)
(append (list-fix x) (list y))
(append (list-fix x) y))))
(defun cons-or-append-at-i (x i l)
(declare (xargs :guard (integerp i)))
(cond
((atom l)
(list x))
((= i 0)
(cons (cons-or-append x (car l))
(cdr l)))
((not (natp i)) nil)
(t (cons (car l)
(cons-or-append-at-i x (1- i) (cdr l))))))
(defthm true-listp-cons-or-append-at-i
(implies (true-listp l)
(true-listp (cons-or-append-at-i x i l)))
:rule-classes :type-prescription)
(in-theory (disable cons-or-append-at-i))
(defun cons-or-append-up-to-i (x i l)
(declare (xargs :measure (acl2-count (1+ i))
:guard (integerp i)))
(if (not (natp i))
nil
(cons (cons-or-append-at-i x i l)
(cons-or-append-up-to-i x (1- i) l))))
(defthm true-list-listp-cons-or-append-up-to-i
(implies (true-listp l)
(true-list-listp (cons-or-append-up-to-i x i l)))
:rule-classes :type-prescription)
(in-theory (disable cons-or-append-up-to-i))
(defund index-of-nested (k x)
(declare (xargs :guard t))
(cond ((atom x) nil)
((equal k (car x)) 0)
((atom (car x))
(b* ((res (index-of-nested k (cdr x))))
(and res (1+ res))))
(t (b* ((res1 (index-of-nested k (car x))))
(if res1
0
(b* ((res (index-of-nested k (cdr x))))
(and res (1+ res))))))))
(defun insert-up-to-rec (x y l)
(declare (xargs :guard (true-list-listp l)))
(if (atom l)
nil
(b* ((i (index-of-nested y (car l)))
(i (if (natp i) i (len (car l)))))
(append (append (insert-up-to-i x i (car l))
(cons-or-append-up-to-i x (1- i) (car l)))
(insert-up-to-rec x y (cdr l))))))
(defthm true-list-listp-of-append
(implies (and (true-list-listp x)
(true-list-listp y))
(true-list-listp (append x y)))
:rule-classes :type-prescription)
(defthm true-list-listp-insert-up-to-rec
(implies (true-list-listp l)
(true-list-listp (insert-up-to-rec x y l)))
:rule-classes :type-prescription)
(in-theory (disable insert-up-to-rec))
(defun shuffle (l1 l2)
(declare (xargs :guard (and (true-listp l1)
(true-listp l2))))
(if (atom l1)
(list l2)
(insert-up-to-rec (car l1) (cadr l1)
(shuffle (cdr l1) l2))))
(defthm true-list-listp-shuffle
(implies (and (true-listp l1)
(true-listp l2))
(true-list-listp (shuffle l1 l2)))
:rule-classes :type-prescription)
(in-theory (disable shuffle))
(defun shuffle-rec1 (x y)
(declare (xargs :guard (and (true-list-listp x)
(true-listp y))))
(if (atom x)
nil
(append (shuffle (car x) y)
(shuffle-rec1 (cdr x) y))))
(defun shuffle-rec2 (x y)
(declare (xargs :guard (and (true-listp x)
(true-list-listp y))))
(if (atom y)
nil
(append (shuffle x (car y))
(shuffle-rec2 x (cdr y)))))
;; Compute a powerset
(defund combine (x y)
(declare (xargs :guard t))
(list y (cons x y)))
(defund combine-rec (x y)
(declare (xargs :guard (true-listp y)))
(if (atom y)
(list (list x))
(append (combine x (car y))
(combine-rec x (cdr y)))))
(defund no-empty-powerset (x)
(declare (xargs :guard t))
(if (atom x)
nil
(combine-rec (car x)
(no-empty-powerset (cdr x)))))
(defund powerset (x)
(declare (xargs :guard t))
(cons nil (no-empty-powerset x)))
|