1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
(in-package "RTL")
(set-enforce-redundancy t)
(local (include-book "axioms"))
(set-inhibit-warnings "theory") ; avoid warning in the next event
(local (in-theory nil))
;; This book is a proof of the group axioms for the addition operation
;; on the elliptic curver known as Curve25519.
;; For documentation, see www.russinoff.com/papers/group.pdf.
;;******************************************************************
;; The Galois Field Fp
;;******************************************************************
(defund p () (- (expt 2 255) 19))
(in-theory (disable (p)))
;; The primality of p is proved here:
(include-book "projects/quadratic-reciprocity/pratt" :dir :system)
(defthm primep-p
(primep (p)))
;; Field element recognizer:
(defun fp (n) (and (natp n) (< n (p))))
;; Field operations:
(defun f+ (m n)
(mod (+ m n) (p)))
(defun f- (m n)
(mod (- m n) (p)))
(defun f* (m n)
(mod (* m n) (p)))
(defun fexpt (n e)
(mod-expt n e (p)))
;; Multiplicative inverse, based on Fermat's theorem, w2hich is proved
;; in "projects/quadratic-reciprocity/fermat.lisp":
(defund frcp (n)
(fexpt n (- (p) 2)))
(defthmd frcp-inverts
(implies (and (fp n) (not (= n 0)))
(equal (f* (frcp n) n)
1)))
;; Division:
(defun f/ (m n)
(mod (* m (frcp n)) (p)))
;;******************************************************************
;; The Elliptic Curve
;;******************************************************************
;; The group EC consists of the point at infinity and the points (x,y)
;; in Fp x Fp such that y^2 = x^3 + A*x^2 + x, where A = 486662.
(defun inf () 'infinity)
(defun x (r) (car r))
(defun y (r) (cdr r))
(defun a () 486662)
(defund ecp (r)
(or (eql r (inf))
(and (fp (x r))
(fp (y r))
(= (fexpt (y r) 2)
(f+ (f+ (fexpt (x r) 3)
(f* (a) (fexpt (x r) 2)))
(x r))))))
;; The inverse and addition operations of the group:
(defund ec- (r)
(if (equal r (inf))
(inf)
(cons (x r) (f- 0 (y r)))))
(defund ec+ (r1 r2)
(if (equal r1 (inf))
r2
(if (equal r2 (inf))
r1
(if (equal r2 (ec- r1))
(inf)
(let* ((x1 (x r1)) (y1 (y r1)) (x2 (x r2)) (y2 (y r2))
(lam (if (= x1 x2)
(f/ (f+ (f+ (f* 3 (fexpt x1 2))
(f* (f* 2 (a)) x1))
1)
(f* 2 y1))
(f/ (f- y1 y2)
(f- x1 x2))))
(x (f- (f- (f- (fexpt lam 2)
(a))
x1)
x2))
(y (f- (f* lam (f- x1 x))
y1)))
(cons x y))))))
(defthm ec-inverse
(implies (ecp p)
(and (ecp (ec- p))
(equal (ec+ (ec- p) p)
(inf)))))
;; Infinity is the identity element:
(defthm ec-identity
(implies (ecp p)
(equal (ec+ (inf) p)
p)))
;; The origin is the unique element of order 2:
(defun o () '(0 . 0))
(defthm r=-r
(implies (ecp r)
(iff (equal r (ec- r))
(or (equal r (inf))
(equal r (o)))))
:rule-classes ())
;; Our objective is to prove the following three properties:
(defthm ec-closure
(implies (and (ecp p) (ecp q))
(ecp (ec+ p q))))
(defthm ec-commutativity
(implies (and (ecp p) (ecp q))
(equal (ec+ p q) (ec+ q p)))
:rule-classes ())
(defthm ec-associativity
(implies (and (ecp p) (ecp q) (ecp r))
(equal (ec+ (ec+ p q) r)
(ec+ p (ec+ q r))))
:rule-classes ())
;; We begin with two simple properties:
(defthm p+q<>p
(implies (and (ecp p)
(ecp q)
(not (equal q (inf))))
(not (equal (ec+ p q) p)))
:rule-classes ())
(defthm p+q=p-q
(implies (and (ecp p)
(ecp q)
(equal (ec+ p q) (ec+ p (ec- q))))
(or (equal p (inf))
(equal q (inf))
(equal p (o))
(equal q (o))))
:rule-classes ())
;;******************************************************************
;; Encoding Points as Integer Triples
;;******************************************************************
;; The sum of two points may be conveniently represented in the form
;; (u/z^2, v/z^2), where z, u, and v are polynomials in the coordinates
;; of the addends. The two lemmas below will allow us to represent
;; the result of a composition of additions in such a form in certain
;; cases. This provides a means of verifying the identities that we
;; need to establish the group properties: By applying these lemmas to
;; both sides of a conjectured identity and cross-multiplying, we can
;; convert the identity to a polynomial congruence, which we can verify
;; computationally by converting the polynomials to sparse Horner
;; normal form.
;; A decodable triple is characterized as follows:
(defund tripp (x)
(and (true-listp x)
(= (len x) 3)
(integerp (car x))
(integerp (cadr x))
(integerp (caddr x))
(not (= (mod (caddr x) (p)) 0))))
;; the decoding function:
(defund dx (p)
(f/ (car p) (expt (caddr p) 2)))
(defund dy (p)
(f/ (cadr p) (expt (caddr p) 3)))
(defun decode3 (p)
(cons (dx p) (dy p)))
;; Note that any point (x,y) admits the canonical encoding (x,y,1).
;; This method is applicable in two cases: (1) the two triples coincide,
;; and (2) one of the triples is canonical.
;; Case (1): P + P, where P = decode3(u,v,z)
;; We define polynomial functions zdbl, udbl, and vdbl
;; such that
;; P + P = (u'/z'^2, v',z'^3),
;; where
;; z' = zdbl(P),
;; u' = udbl(P),
;; v' = vdbl(P).
(defund lamdbl (p)
(f/ (+ (* 3 (expt (dx p) 2))
(* 2 (a) (dx p))
1)
(* 2 (dy p))))
(defund xdbl (p)
(f- (expt (lamdbl p) 2) (+ (a) (* 2 (dx p)))))
(defund ydbl (p)
(f- (f* (lamdbl p) (- (dx p) (xdbl p)))
(dy p)))
(defund zdbl (p)
(let ((v (cadr p))
(z (caddr p)))
(* 2 v z)))
(defund wdbl (p)
(let ((u (car p))
(z (caddr p)))
(+ (* 3 (expt u 2))
(* 2 (a) u (expt z 2))
(expt z 4))))
(defund udbl (p)
(let ((u (car p))
(v (cadr p))
(z (caddr p)))
(- (expt (wdbl p) 2)
(* 4
(expt v 2)
(+ (* (a) (expt z 2))
(* 2 u))))))
(defund vdbl (p)
(let ((u (car p))
(v (cadr p)))
(- (* (wdbl p)
(- (* 4 u (expt v 2))
(udbl p)))
(* 8 (expt v 4)))))
(defund dbl (p)
(list (udbl p)
(vdbl p)
(zdbl p)))
(defthmd dbl-formula
(implies (and (tripp p)
(not (= (mod (cadr p) (p)) 0)))
(equal (decode3 (dbl p))
(ec+ (decode3 p) (decode3 p)))))
;; Case (2): P1 + P2, where P1 = (x,y) = decode3(x,y,1) and
;; P2 = decode3(u,v,z) <> P1.
;; We define polynomial functions zsum, usum, and vsum such that
;; P1 + P2 = (u'/z'^2, v',z'^2), where
;; z' = zsum(P, Q),
;; u' = usum(P, Q),
;; v' = vsum(P. Q).
(defund lamsum (p1 p2)
(f/ (f- (dy p1) (dy p2))
(f- (dx p1) (dx p2))))
(defund zsum (p1 p2)
(let ((u (car p2))
(z (caddr p2))
(x (car p1)))
(* z
(- (* x (expt z 2))
u))))
(defund usum (p1 p2)
(let ((u (car p2))
(v (cadr p2))
(z (caddr p2))
(x (car p1))
(y (cadr p1)))
(- (expt (- (* (expt z 3) y)
v)
2)
(* (+ (* (expt z 2) (+ (a) x))
u)
(expt (- (* (expt z 2) x)
u)
2)))))
(defund vsum (p1 p2)
(let ((v (cadr p2))
(z (caddr p2))
(x (car p1))
(y (cadr p1)))
(- (* (- (* (expt z 3) y)
v)
(- (* (expt (zsum p1 p2) 2) x)
(usum p1 p2)))
(* (expt (zsum p1 p2) 3)
y))))
(defund sum (p1 p2)
(list (usum p1 p2)
(vsum p1 p2)
(zsum p1 p2)))
(defthmd sum-formula
(implies (and (tripp p1)
(tripp p2)
(not (= (dx p2) (dx p1)))
(= (caddr p1) 1))
(equal (decode3 (sum p1 p2))
(ec+ (decode3 p1) (decode3 p2)))))
;;*********************************************************************************
;; Reducing SHNFs
;;*********************************************************************************
;; The theory of sparse Horner normal form (SHNF) lives here:
(include-book "projects/shnf/top" :dir :system)
;; The following functions are defined in that book:
;; polyp(x, vars) recognizes x as a polynomial over the variable list vars.
;; evalp(x, alist) computes the value of the polynomial x under the variable
;; assignment given by alist.
;; shnfp(x) recognizes x as a SHNF.
;; norm(x, vars) converts a polynomial x over the variable list vars to a SHNF.
;; It calls these auxiliary functions:
;; norm-add(x, y) adds the SHNFs x and y.
;; norm-mul(x, y) multiplies the SHNFs x and y.
;; norm-expt(x, k) computes the kth power of the SHNF x.
;; norm-pop(i, p) normalizes (POP i p), where i is a nat and p is a SHNF
;; norm-pow(i, p, q) normalizes (POW i p q), where i is a positive integer
;; and p and q are SHNFs.
;; evalh(x, vals) takes a SHNF x = norm(z, vars), where z is a polynomial over
;; vars, and computes evalp(z, pairlis$(vars, vals)),
;; We constrain three points, pi = (xi . yi), i=1,2,3, to lie on the curve EC:
(encapsulate (((y0) => *) ((y1) => *) ((y2) => *)
((x0) => *) ((x1) => *) ((x2) => *))
(local (defun y0 () 0))
(local (defun y1 () 0))
(local (defun y2 () 0))
(local (defun x0 () 0))
(local (defun x1 () 0))
(local (defun x2 () 0))
(defun p0 () (cons (x0) (y0)))
(defun p1 () (cons (x1) (y1)))
(defun p2 () (cons (x2) (y2)))
(defthm ecp-assumption
(and (ecp (p0)) (ecp (p1)) (ecp (p2)))))
;; We focus on the case of a polynomial in x0, y0, x1, y1, x2, and y2.
(defun vars () '(y0 y1 y2 x0 x1 x2))
(defund vals () (list (y0) (y1) (y2) (x0) (x1) (x2)))
(defund vlist () (pairlis$ (vars) (vals)))
(defun polyp$ (x) (polyp x (vars)))
(defun evalp$ (x) (evalp x (vlist)))
(defun evalh$ (x) (evalh x (vals)))
;; We shall define a function, reduce$, that converts such a polynomial to
;; a SHNF and systematically rewrites the result according to the assumption
;; that the three points satisfy the curve equation.
;; The above ordering of vars is designed to maximize the efficiency of reduce$.
;; The guts of reduce$ is the function split$. Its arguments are as follows:
;; (1) h is a SHNF
;; (2) j is in {0,1,2), representing Yj
;; (3) k is a nat
;; It returns a multiple value (mv h0 h1), where h0 and h1 are SHNFs that are
;; independent of Yj such that under the assumptions noted above,
;; evalh(h, vals) = evalh(h0, vals) + evalh(Yj, vals) * evalh(h1, vals).
;; Note that according to the definition, when y is at the head of vars, split
;; effectively replaces y^2 with the value of
;; (pop 3 (pow 1 (pow 1 (pow 1 1 486662) 1) 0),
;; which is xi^3 + a * xi^2 + xi when y = yi.
;; The following SHNF is used in the reduction:
(defund theta () `(pop 3 (pow 1 (pow 1 (pow 1 1 ,(a)) 1) 0)))
(defthm shnfp-theta
(shnfp (theta)))
(defthmd theta-0-mod
(equal (mod (evalh (theta) (vals)) (p))
(mod (expt (y0) 2) (p))))
(defthmd theta-1-mod
(equal (mod (evalh (theta) (cdr (vals))) (p))
(mod (expt (y1) 2) (p))))
(defthmd theta-2-mod
(equal (mod (evalh (theta) (cddr (vals))) (p))
(mod (expt (y2) 2) (p))))
(defun split$ (h j k)
(if (or (atom h) (< j k))
(mv h 0)
(if (eql (car h) 'pop)
(let ((i (cadr h)) (p (caddr h)))
(mv-let (p0 p1) (split$ p j (+ i k))
(mv (norm-pop i p0) (norm-pop i p1))))
(let ((i (cadr h)) (p (caddr h)) (q (cadddr h)))
(mv-let (p0 p1) (split$ p j k)
(mv-let (q0 q1) (split$ q j (1+ k))
(if (= j k)
(if (evenp i)
(mv (norm-add (norm-mul (norm-expt (theta) (/ i 2)) p0)
(norm-pop 1 q0))
(norm-add (norm-mul (norm-expt (theta) (/ i 2)) p1)
(norm-pop 1 q1)))
(mv (norm-add (norm-mul (norm-expt (theta) (/ (1+ i) 2)) p1)
(norm-pop 1 q0))
(norm-add (norm-mul (norm-expt (theta) (/ (1- i) 2)) p0)
(norm-pop 1 q1))))
(mv (norm-pow i p0 q0)
(norm-pow i p1 q1)))))))))
(defthm split$-lemma
(implies (and (natp j)
(<= j 2)
(natp k)
(shnfp h))
(mv-let (h0 h1) (split$ h j k)
(and (shnfp h0)
(shnfp h1)
(equal (mod (evalh h (nthcdr k (vals))) (p))
(mod (+ (evalh h0 (nthcdr k (vals)))
(* (nth j (vals))
(evalh h1 (nthcdr k (vals)))))
(p)))))))
;; Thus, evalh(rewrite$(h, j), (vars)) = evalh(h, vars):
(defun rewrite$ (h j)
(mv-let (h0 h1) (split$ h j 0)
(norm-add h0 (norm-mul h1 (norm (nth j (vars)) (vars))))))
(defthm rewrite$-lemma
(implies (and (natp j)
(<= j 2)
(shnfp h))
(let ((r (rewrite$ h j)))
(and (shnfp r)
(equal (mod (evalh$ r) (p))
(mod (evalh$ h) (p)))))))
;; reduce successively rewrites powers of Y0, Y1, and Y2:
(defun reduce$ (x)
(rewrite$ (rewrite$ (rewrite$ (norm x (vars)) 0) 1) 2))
(defthm reduce$-correct
(implies (polyp$ x)
(and (shnfp (reduce$ x))
(equal (mod (evalh$ (reduce$ x)) (p))
(mod (evalp$ x) (p))))))
;;*********************************************************************************
;; Encoding Points as Term Triples
;;*********************************************************************************
;; The evaluation of terms induces a mapping from the set of term triples, as
;; recognized by the following predicate, to points in Fp x Fp:
(defund tripp$ (x)
(and (true-listp x)
(= (len x) 3)
(polyp$ (car x))
(polyp$ (cadr x))
(polyp$ (caddr x))
(not (= (mod (evalp$ (caddr x)) (p)) 0))))
(defun eval3$ (p)
(list (evalp$ (car p))
(evalp$ (cadr p))
(evalp$ (caddr p))))
(defun decode3$ (p)
(decode3 (eval3$ p)))
;; The following triples arer mapped to the points P1, P2, P3, and O:
(defund p0$ () (list 'x0 'y0 1))
(defund p1$ () (list 'x1 'y1 1))
(defund p2$ () (list 'x2 'y2 1))
(defund o$ () '(0 0 1))
(defthm tripp$p
(and (tripp$ (p0$))
(tripp$ (p1$))
(tripp$ (p2$))))
(defthm tripp$o$
(tripp$ (o$)))
(defthm decode3$p$
(and (equal (decode3$ (p0$)) (p0))
(equal (decode3$ (p1$)) (p1))
(equal (decode3$ (p2$)) (p2))))
(defthm decode3$o$
(equal (decode3$ (o$)) (o)))
;; We define addition operations on term triples corresponding to the
;; two addition operations on integer triples.
;; Doubling:
(defun zdbl$ (p)
(let ((v (cadr p))
(z (caddr p)))
`(* 2 (* ,v ,z))))
(defun wdbl$ (p)
(let ((u (car p))
(z (caddr p)))
`(+ (* 3 (expt ,u 2))
(+ (* 2 (* ,(a) (* ,u (expt ,z 2))))
(expt ,z 4)))))
(defun udbl$ (p)
(let ((u (car p))
(v (cadr p))
(z (caddr p)))
`(- (expt ,(wdbl$ p) 2)
(* 4
(* (expt ,v 2)
(+ (* ,(a) (expt ,z 2))
(* 2 ,u)))))))
(defun vdbl$ (p)
(let ((u (car p))
(v (cadr p)))
`(- (* ,(wdbl$ p)
(- (* 4 (* ,u (expt ,v 2)))
,(udbl$ p)))
(* 8 (expt ,v 4)))))
(defun dbl$ (p)
(list (udbl$ p)
(vdbl$ p)
(zdbl$ p)))
(defthmd tripp$-dbl$
(implies (and (tripp$ p)
(ecp (decode3$ p))
(not (equal (decode3$ p) (o))))
(tripp$ (dbl$ p))))
(defthmd dbl$-formula
(implies (and (tripp$ p)
(ecp (decode3$ p))
(not (equal (decode3$ p) (o))))
(equal (decode3$ (dbl$ p))
(ec+ (decode3$ p) (decode3$ p)))))
;; Addition of distinct points, one of which is canonical:
(defun zsum$ (p1 p2)
(let ((u (car p2))
(z (caddr p2))
(x (car p1)))
`(* ,z
(- (* ,x (expt ,z 2))
,u))))
(defun usum$ (p1 p2)
(let ((u (car p2))
(v (cadr p2))
(z (caddr p2))
(x (car p1))
(y (cadr p1)))
`(- (expt (- (* (expt ,z 3) ,y)
,v)
2)
(* (+ (* (expt ,z 2) (+ ,(a) ,x))
,u)
(expt (- (* (expt ,z 2) ,x)
,u)
2)))))
(defun vsum$ (p1 p2)
(let ((v (cadr p2))
(z (caddr p2))
(x (car p1))
(y (cadr p1)))
`(- (* (- (* (expt ,z 3) ,y)
,v)
(- (* (expt ,(zsum$ p1 p2) 2) ,x)
,(usum$ p1 p2)))
(* (expt ,(zsum$ p1 p2) 3)
,y))))
(defun sum$ (p1 p2)
(list (usum$ p1 p2)
(vsum$ p1 p2)
(zsum$ p1 p2)))
(defthm zdbl$-rewrite
(equal (evalp$ (zdbl$ p))
(zdbl (eval3$ p))))
(defthm udbl$-rewrite
(equal (evalp$ (udbl$ p))
(udbl (eval3$ p))))
(defthm vdbl$-rewrite
(equal (evalp$ (vdbl$ p))
(vdbl (eval3$ p))))
(defthm zsum$-rewrite
(equal (evalp$ (zsum$ p1 p2))
(zsum (eval3$ p1) (eval3$ p2))))
(defthm usum$-rewrite
(equal (evalp$ (usum$ p1 p2))
(usum (eval3$ p1) (eval3$ p2))))
(defthm vsum$-rewrite
(equal (evalp$ (vsum$ p1 p2))
(vsum (eval3$ p1) (eval3$ p2))))
(defthm tripp$-sum$
(implies (and (tripp$ p1)
(tripp$ p2)
(not (= (x (decode3$ p1)) (x (decode3$ p2))))
(= (caddr p1) 1))
(tripp$ (sum$ p1 p2))))
(defthmd sum$-formula
(implies (and (tripp$ p1)
(tripp$ p2)
(not (= (x (decode3$ p1)) (x (decode3$ p2))))
(= (caddr p1) 1))
(equal (decode3$ (sum$ p1 p2))
(ec+ (decode3$ p1) (decode3$ p2)))))
;; Negation:
(defun neg$ (p)
(list (car p) (list '- (cadr p)) (caddr p)))
(defthm tripp$-neg$
(implies (and (tripp$ p)
(ecp (decode3$ p)))
(tripp$ (neg$ p))))
(defthmd neg$-formula
(implies (and (tripp$ p)
(ecp (decode3$ p)))
(equal (decode3$ (neg$ p))
(ec- (decode3$ p)))))
;; The next two lemmas will be critical in establishing the group axioms.
;; EC-encodings:
(defun ecp$-term (p)
(let* ((u (car p))
(v (cadr p))
(z (caddr p)))
`(- (expt ,v 2)
(+ (expt ,u 3)
(+ (* ,(a) (expt (* ,u ,z) 2))
(* ,u (expt ,z 4)))))))
(defun ecp$ (p)
(equal (reduce$ (ecp$-term p))
0))
(defthmd ecp$ecp
(implies (and (tripp$ p)
(ecp$ p))
(ecp (decode3$ p))))
;; The equivalence relation:
(defun eq$ (p1 p2)
(let ((u1 (car p1))
(v1 (cadr p1))
(z1 (caddr p1))
(u2 (car p2))
(v2 (cadr p2))
(z2 (caddr p2)))
(and (equal (reduce$ `(* ,u1 (expt ,z2 2)))
(reduce$ `(* ,u2 (expt ,z1 2))))
(equal (reduce$ `(* ,v1 (expt ,z2 3)))
(reduce$ `(* ,v2 (expt ,z1 3)))))))
(defthmd eq$eq
(implies (and (tripp$ p1)
(tripp$ p2)
(eq$ p1 p2))
(equal (decode3$ p1) (decode3$ p2))))
;;*********************************************************************************
;; Group Axioms
;;*********************************************************************************
(defthm comp-1
(and (ecp$ (dbl$ (p0$)))
(ecp$ (sum$ (p0$) (p1$))))
:rule-classes ())
;; [0.02 seconds]
(defthm ec-closure
(implies (and (ecp p) (ecp q))
(ecp (ec+ p q))))
(defthm comp-2
(eq$ (sum$ (p0$) (p1$))
(sum$ (p1$) (p0$)))
:rule-classes ())
;; [0.01 seconds]
(defthm ec-commutativity
(implies (and (ecp p) (ecp q))
(equal (ec+ p q) (ec+ q p)))
:rule-classes ())
;; (-P0) + (-P0) = -(P0 + P0)
(defthm comp-3
(eq$ (dbl$ (neg$ (p0$)))
(neg$ (dbl$ (p0$))))
:rule-classes ())
;; [0.01 seconds]
;; (-P0) + (-P1) = -(P0 + P1)
(defthm comp-4
(eq$ (sum$ (neg$ (p0$)) (neg$ (p1$)))
(neg$ (sum$ (p0$) (p1$))))
:rule-classes ())
;; [0.01 seconds]
(defthm lemma-15
(implies (and (ecp p) (ecp q))
(equal (ec+ (ec- p) (ec- q))
(ec- (ec+ p q))))
:rule-classes ())
;; P0 + P0 <> -P0 => (-P0) + (P0 + P0) = P0
(defthm comp-5
(eq$ (sum$ (neg$ (p0$))
(dbl$ (p0$)))
(p0$))
:rule-classes ())
;; [0.01 seconds]
;; P0 <> +-P1 and P0 + P1 <> -P0 => (-P0) + (P0 + P1) = P1
(defthm comp-6
(eq$ (sum$ (neg$ (p0$))
(sum$ (p0$) (p1$)))
(p1$))
:rule-classes ())
;; [0.04 seconds]
(defthm lemma-16
(implies (and (ecp p) (ecp q)
(not (equal (ec+ p q) (ec- p))))
(equal (ec+ (ec- p) (ec+ p q))
q))
:rule-classes ())
;; P0 <> +-P1 and P0 + P1 <> +-P2 and P0 <> +-P2 and P0 + P2 <> +-P1 => P2 + (P0 + P1) = P1 + (P0 + P2)
(defthm comp-7
(eq$ (sum$ (p2$) (sum$ (p0$) (p1$)))
(sum$ (p1$) (sum$ (p0$) (p2$))))
:rule-classes ())
;; [3.94 seconds]
;; P0 <> +-P1 and P0 + P0 <> +-P1 and P0 + P1 <> -P0 => P1 + (P0 + P0) = P0 + (P0 + P1)
(defthm comp-8
(eq$ (sum$ (p1$) (dbl$ (p0$)))
(sum$ (p0$) (sum$ (p0$) (p1$))))
:rule-classes ())
(defthm lemma-17
(implies (and (ecp p) (ecp q) (ecp r)
(not (equal (ec+ p q) r))
(not (equal (ec+ p q) (ec- r)))
(not (equal (ec+ p r) q))
(not (equal (ec+ p r) (ec- q))))
(equal (ec+ r (ec+ p q))
(ec+ q (ec+ p r))))
:rule-classes ())
;; (P0 + P0 <> -P0 and (P0 + P0) + P0 <> -P0 => (P0 + P0) + (P0 + P0) = P0 + (P0 + (P0 + P0))
(defthm comp-9
(eq$ (dbl$ (dbl$ (p0$)))
(sum$ (p0$) (sum$ (p0$) (dbl$ (p0$)))))
:rule-classes ())
;; [0.22 seconds]
;; P0 <> +-P1 and (P0 + P1 <> -P0 and (P0 + P1) + P0 <> +-P1 => (P0 + P1) + (P0 + P1) = P0 + (P1 + (P0 + P1))
(defthm comp-10
(eq$ (dbl$ (sum$ (p0$) (p1$)))
(sum$ (p0$) (sum$ (p1$) (sum$ (p0$) (p1$)))))
:rule-classes ())
;; [26.23 seconds}
(defthm lemma-18
(implies (and (ecp p) (ecp q)
(not (equal (ec+ p q) (ec- q)))
(not (equal (ec+ q (ec+ p q)) p))
(not (equal (ec+ q (ec+ p q)) (ec- p))))
(equal (ec+ (ec+ p q) (ec+ p q))
(ec+ p (ec+ q (ec+ p q)))))
:rule-classes ())
;; P0 + P1 = -P0 => P1 = -(P0 + P0)
(defun phi ()
(let* ((s (sum$ (p0$) (p1$)))
(u (car s))
(z (caddr s)))
`(- (expt (+ (- ,u (* x0 (expt ,z 2)))
(* 2 (* y0 y1)))
2)
(expt (* 2 (* y0 y1)) 2))))
(defun psi ()
(let* ((s (sum$ (p0$) (p1$)))
(d (dbl$ (p0$)))
(zs (caddr s))
(ud (car d))
(zd (caddr d)))
`(* (- ,ud (* x1 (expt ,zd 2)))
(expt ,zs 2))))
(defthm comp-11
(equal (reduce$ (phi))
(reduce$ (psi)))
:rule-classes ())
;; [0.01 seconds}
(defthm lemma-19
(implies (and (ecp p) (ecp q)
(equal (ec+ p q) (ec- p)))
(equal q (ec- (ec+ p p))))
:rule-classes ())
(defthm lemma-20
(implies (and (ecp p) (ecp q) (ecp r)
(equal (ec+ p q) (ec- r)))
(equal (ec+ (ec+ p q) r)
(ec+ p (ec+ q r))))
:rule-classes ())
(defthm lemma-21
(implies (and (ecp p) (ecp q))
(equal (ec+ (ec+ p p) q)
(ec+ p (ec+ p q))))
:rule-classes ())
;; (P0 + O) + (P0 + O) = P0 + P0 + P0
(defthm comp-12
(eq$ (dbl$ (sum$ (p0$) (o$)))
(dbl$ (p0$)))
:rule-classes ())
;; [0.01 seconds]
;; (O + (P0 + O) = P0
(defthm comp-13
(eq$ (sum$ (o$) (sum$ (p0$) (o$)))
(p0$))
:rule-classes ())
;; [0.00 seconds]
(defthm lemma-22
(implies (ecp p)
(equal (ec+ (ec+ p (o))
(ec+ p (o)))
(ec+ p (ec+ (o) (ec+ p (o))))))
:rule-classes ())
(defthm ec-associativity
(implies (and (ecp p) (ecp q) (ecp r))
(equal (ec+ (ec+ p q) r)
(ec+ p (ec+ q r))))
:rule-classes ())
|