1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
|
(in-package "ACL2")
;; Some lemmas below are taken from other books with credit; in most cases they
;; replaced a theorem developed for this project which either had the same name
;; (causing a name conflict), or which rewrote the same target (causing :use
;; hints to become :useless even if the project-specific lemma was disabled for
;; the goal in question.)
(defthm make-character-list-makes-character-list
(character-listp (make-character-list x)))
;; The following are redundant with the definition in
;; books/std/lists/append.lisp, from where they were taken with thanks.
(defthm len-of-append
(equal (len (append x y))
(+ (len x) (len y))))
(defthm consp-of-append
(equal (consp (append x y))
(or (consp x) (consp y))))
(defthm len-of-make-character-list
(equal (len (make-character-list x)) (len x)))
(defthm len-of-revappend
(equal (len (revappend x y)) (+ (len x) (len y))))
(defthm len-of-take (equal (len (take n xs)) (nfix n)))
;; The following is redundant with the definition in
;; books/coi/lists/basic.lisp, from where it was taken with thanks.
(defthm nthcdr-of-append
(equal (nthcdr n (append a b))
(if (<= (nfix n) (len a))
(append (nthcdr n a) b)
(nthcdr (- n (len a)) b)))
:hints(("Goal" :in-theory (enable nthcdr))))
(defthm take-of-binary-append-1
(implies (and (natp i) (<= i (len x)))
(equal (take i (binary-append x y))
(take i x))))
(defthm
by-slice-you-mean-the-whole-cake-1
(equal (first-n-ac (len l) l ac)
(revappend ac (true-list-fix l)))
:hints (("goal" :induct (revappend l ac)))
:rule-classes
((:rewrite
:corollary
(implies (equal i (len l))
(equal (first-n-ac i l ac)
(revappend ac (true-list-fix l)))))))
;; The following is redundant with the definition in
;; books/std/lists/take.lisp, from where it was taken with thanks.
(defthm take-of-len-free
(implies (equal len (len x)) (equal (take len x) (true-list-fix x))))
(defthm assoc-after-remove1-assoc
(implies (not (equal name1 name2))
(equal (assoc-equal name1 (remove1-assoc name2 alist))
(assoc-equal name1 alist))))
(defthm assoc-after-remove-assoc
(equal (assoc-equal name1 (remove-assoc name2 alist))
(if (not (equal name1 name2))
(assoc-equal name1 alist)
nil)))
(defthm character-listp-of-revappend
(equal (character-listp (revappend x y))
(and (character-listp (true-list-fix x))
(character-listp y))))
(defthm character-listp-of-take
(implies (character-listp l)
(equal (character-listp (take n l))
(<= (nfix n) (len l)))))
(defthm character-listp-of-nthcdr
(implies (and (character-listp l))
(character-listp (nthcdr n l))))
;; The following is redundant with the definition in
;; books/std/strings/make-character-list.lisp, from where it was taken with
;; thanks.
(defthm str::make-character-list-when-character-listp
(implies (character-listp x)
(equal (make-character-list x) x)))
(defthm make-character-list-of-binary-append
(equal (make-character-list (binary-append x y))
(binary-append (make-character-list x) (make-character-list y))))
;; The following is redundant with the definition in
;; books/std/lists/nthcdr.lisp, from where it was taken with thanks.
(defthm len-of-nthcdr
(equal (len (nthcdr n l))
(nfix (- (len l) (nfix n))))
:hints (("Goal" :induct (nthcdr n l))))
;; The following is redundant with the definition in
;; books/std/lists/nthcdr.lisp, from where it was taken with thanks.
(defthm consp-of-nthcdr
(equal (consp (nthcdr n x))
(< (nfix n) (len x)))
:hints (("Goal" :in-theory (disable len-of-nthcdr)
:use ((:instance len-of-nthcdr (l x)))
:expand (len (nthcdr n x)))))
(defthm revappend-of-binary-append-1
(equal (binary-append (revappend x y) z)
(revappend x (binary-append y z))))
(defthm
binary-append-first-n-ac-nthcdr
(implies (<= i (len l))
(equal (binary-append (first-n-ac i l ac)
(nthcdr i l))
(revappend ac l)))
:hints (("goal" :induct (first-n-ac i l ac))))
;; The following is redundant with the definition in books/std/lists/nth.lisp,
;; from where it was taken with thanks.
(defthm nth-of-append
(equal (nth n (append x y))
(if (< (nfix n) (len x))
(nth n x)
(nth (- n (len x)) y))))
;; The following is redundant with the definition in
;; books/std/lists/append.lisp, from where it was taken with thanks.
(defthm associativity-of-append
(equal (append (append a b) c)
(append a (append b c))))
(defthm member-of-a-nat-list
(implies (and (member-equal x lst)
(nat-listp lst))
(natp x))
:rule-classes :forward-chaining)
(defthm update-nth-of-boolean-list
(implies (boolean-listp l)
(equal (boolean-listp (update-nth key val l))
(booleanp val))))
(defthm nat-listp-of-binary-append
(equal (nat-listp (binary-append x y))
(and (nat-listp (true-list-fix x)) (nat-listp y))))
(defthm eqlable-listp-if-nat-listp (implies (nat-listp l) (eqlable-listp l)))
(defthm member-of-binary-append
(iff (member-equal x (binary-append lst1 lst2))
(or (member-equal x lst1)
(member-equal x lst2))))
(defthm no-duplicatesp-of-append
(equal (no-duplicatesp-equal (binary-append x y))
(and (no-duplicatesp x)
(no-duplicatesp y)
(not (intersectp-equal x y)))))
(defthm intersectp-of-append-1
(equal (intersectp-equal z (binary-append x y))
(or (intersectp-equal z x)
(intersectp-equal z y))))
(defthm intersectp-of-append-2
(equal (intersectp-equal (binary-append x y) z)
(or (intersectp-equal x z)
(intersectp-equal y z))))
(defthm intersectp-is-commutative
(equal (intersectp-equal x y)
(intersectp-equal y x)))
;; The following five theorems are redundant with the eponymous theorems in
;; books/std/lists/sets.lisp, from where they were taken with thanks.
(defthm subsetp-append1
(equal (subsetp (append a b) c)
(and (subsetp a c)
(subsetp b c))))
(defthm subsetp-append2
(subsetp a (append a b)))
(defthm subsetp-append3
(subsetp b (append a b)))
(defthm subsetp-trans
(implies (and (subsetp x y) (subsetp y z))
(subsetp x z)))
(defthm
subsetp-member
(implies (and (member a x) (subsetp x y))
(member a y))
:rule-classes
((:rewrite)
(:rewrite :corollary (implies (and (subsetp x y) (member a x))
(member a y)))
(:rewrite
:corollary (implies (and (not (member a y)) (subsetp x y))
(not (member a x))))
(:rewrite
:corollary (implies (and (subsetp x y) (not (member a y)))
(not (member a x))))))
(defthm subsetp-trans2
(implies (and (subsetp y z)
(subsetp x y))
(subsetp x z))
:hints(("Goal" :in-theory (enable subsetp-member))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/nth.lisp, from where it was taken with thanks.
(defthm nth-of-revappend
(equal (nth n (revappend x y))
(if (< (nfix n) (len x))
(nth (- (len x) (+ 1 (nfix n))) x)
(nth (- n (len x)) y))))
;; The following is redundant with the eponymous theorem in
;; books/misc/gentle.lisp, from where it was taken with thanks to
;; Messrs. Boyer, Hunt and Davis.
(defthm true-listp-of-make-list-ac
(equal (true-listp (make-list-ac n val ac))
(true-listp ac))
:rule-classes ((:rewrite)
(:type-prescription
:corollary
(implies (true-listp ac)
(true-listp (make-list-ac n val ac))))))
;; The following is redundant with the eponymous theorem in
;; books/centaur/ubdds/param.lisp, from where it was taken with thanks to
;; Messrs. Boyer and Hunt.
(defthm len-of-make-list-ac
(equal (len (make-list-ac n val acc))
(+ (nfix n) (len acc))))
(defthm consp-of-make-list-ac
(iff (consp (make-list-ac n val ac))
(or (not (zp n)) (consp ac))))
(defthm boolean-listp-of-make-list-ac
(implies (booleanp val)
(equal (boolean-listp (make-list-ac n val ac))
(boolean-listp ac))))
(defthm booleanp-of-car-make-list
(implies (and (booleanp val)
(boolean-listp ac)
(> (+ n (len ac)) 0))
(booleanp (car (make-list-ac n val ac)))))
(defthm car-of-make-list
(equal (car (make-list-ac n val ac))
(if (zp n) (car ac) val)))
(defthm cdr-of-make-list
(equal (cdr (make-list-ac n val ac))
(if (zp n)
(cdr ac)
(make-list-ac (- n 1) val ac))))
;; The following is redundant with the eponymous theorem in
;; books/data-structures/list-defthms.lisp, from where it was taken with thanks.
(defthm member-equal-nth
(implies (< (nfix n) (len l))
(member-equal (nth n l) l))
:hints (("Goal" :in-theory (enable nth))))
(defthm make-character-list-of-revappend
(equal (make-character-list (revappend x y))
(revappend (make-character-list x)
(make-character-list y))))
(defthm
take-of-make-character-list
(implies (<= i (len l))
(equal (take i (make-character-list l))
(make-character-list (take i l)))))
(defthm revappend-of-true-list-fix
(equal (revappend x (true-list-fix y))
(true-list-fix (revappend x y))))
(defthm append-of-true-list-fix
(equal (append (true-list-fix x) y)
(append x y)))
(defthm boolean-listp-of-revappend
(equal (boolean-listp (revappend x y))
(and (boolean-listp (true-list-fix x))
(boolean-listp y))))
(defthm boolean-listp-of-first-n-ac
(implies (boolean-listp l)
(equal (boolean-listp (first-n-ac i l ac))
(boolean-listp (true-list-fix ac)))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/take.lisp, from where it was taken with thanks.
(defthm consp-of-take
(equal (consp (take n xs))
(not (zp n))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/nth.lisp, from where it was taken with thanks.
(defthm nth-of-make-list-ac
(equal (nth n (make-list-ac m val acc))
(if (< (nfix n) (nfix m))
val
(nth (- n (nfix m)) acc))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/nth.lisp, from where it was taken with thanks.
(defthm nth-of-nthcdr
(equal (nth n (nthcdr m x))
(nth (+ (nfix n) (nfix m)) x)))
(defthm intersect-with-subset
(implies (and (subsetp-equal x y)
(intersectp-equal x z))
(intersectp-equal y z))
:rule-classes
(:rewrite
(:rewrite
:corollary
(implies (and (intersectp-equal x z)
(subsetp-equal x y))
(intersectp-equal y z)))
(:rewrite
:corollary
(implies (and (intersectp-equal z x)
(subsetp-equal x y))
(intersectp-equal y z)))
(:rewrite
:corollary
(implies (and (subsetp-equal x y)
(intersectp-equal z x))
(intersectp-equal z y)))
(:rewrite
:corollary
(implies (and (intersectp-equal z x)
(subsetp-equal x y))
(intersectp-equal z y)))
(:rewrite
:corollary
(implies (and (intersectp-equal x z)
(subsetp-equal x y))
(intersectp-equal z y)))
(:rewrite
:corollary
(implies (and (subsetp-equal x y)
(not
(intersectp-equal y z)))
(not
(intersectp-equal x z))))
(:rewrite
:corollary
(implies (and (not
(intersectp-equal y z))
(subsetp-equal x y))
(not
(intersectp-equal x z))))
(:rewrite
:corollary
(implies (and (not
(intersectp-equal z y))
(subsetp-equal x y))
(not
(intersectp-equal x z))))
(:rewrite
:corollary
(implies (and (subsetp-equal x y)
(not
(intersectp-equal y z)))
(not
(intersectp-equal z x))))
(:rewrite
:corollary
(implies (and (not
(intersectp-equal y z))
(subsetp-equal x y))
(not
(intersectp-equal z x))))
(:rewrite
:corollary
(implies (and (not
(intersectp-equal z y))
(subsetp-equal x y))
(not
(intersectp-equal z x))))
(:rewrite
:corollary
(implies (and (intersectp-equal x z)
(not
(intersectp-equal z y)))
(not
(subsetp-equal x y))))
(:rewrite
:corollary
(implies (and (intersectp-equal z x)
(not
(intersectp-equal z y)))
(not
(subsetp-equal x y))))
(:rewrite
:corollary
(implies (and (not
(intersectp-equal z y))
(intersectp-equal x z))
(not
(subsetp-equal x y))))
(:rewrite
:corollary
(implies (and (not
(intersectp-equal y z))
(intersectp-equal x z))
(not
(subsetp-equal x y))))))
(defthm update-nth-of-make-list
(implies (and (integerp key) (>= key n) (natp n))
(equal (update-nth key val (make-list-ac n l ac))
(make-list-ac n l (update-nth (- key n) val ac)))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/update-nth.lisp, from where it was taken with thanks.
(defthm nthcdr-of-update-nth
(equal (nthcdr n1 (update-nth n2 val x))
(if (< (nfix n2) (nfix n1))
(nthcdr n1 x)
(update-nth (- (nfix n2) (nfix n1)) val (nthcdr n1 x)))))
(defthm update-nth-of-update-nth-1
(implies (not (equal (nfix key1) (nfix key2)))
(equal (update-nth key1 val1 (update-nth key2 val2 l))
(update-nth key2 val2 (update-nth key1 val1 l)))))
(defthm update-nth-of-update-nth-2
(equal (update-nth key val2 (update-nth key val1 l))
(update-nth key val2 l)))
;; This can probably be replaced by a functional instantiation.
(defthm nat-listp-of-remove
(implies (nat-listp l)
(nat-listp (remove-equal x l))))
;; This should be moved into the community books.
(defthm subsetp-of-remove
(subsetp-equal (remove-equal x l) l))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/sets.lisp, from where it was taken with thanks.
(defthm member-of-remove
(iff (member a (remove b x))
(and (member a x)
(not (equal a b))))
:hints(("goal" :induct (len x))))
(defthm
assoc-after-put-assoc
(equal (assoc-equal name1 (put-assoc-equal name2 val alist))
(if (equal name1 name2)
(cons name1 val)
(assoc-equal name1 alist))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/nthcdr.lisp, from where it was taken with thanks.
(defthm nthcdr-of-cdr
(equal (nthcdr i (cdr x))
(cdr (nthcdr i x))))
(defthm consp-of-cdr-of-nthcdr
(equal (consp (cdr (nthcdr i x)))
(< (nfix i) (len (cdr x))))
:hints (("goal" :do-not-induct t
:in-theory (disable nthcdr-of-cdr)
:use nthcdr-of-cdr
:expand (len (cdr x)))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/update-nth.lisp, from where it was taken with thanks.
(defthm update-nth-of-nth
(implies (< (nfix n) (len x))
(equal (update-nth n (nth n x) x) x)))
(defthm character-listp-of-make-list-ac
(equal (character-listp (make-list-ac n val ac))
(and (character-listp ac)
(or (zp n) (characterp val)))))
(defthm string-listp-of-append
(equal (string-listp (append x y))
(and (string-listp (true-list-fix x))
(string-listp y))))
(defthm true-listp-when-string-list
(implies (string-listp x)
(true-listp x)))
(defthm
binary-append-take-nthcdr
(implies (<= i (len l))
(equal (binary-append (take i l)
(nthcdr i l))
l)))
(defthm true-list-fix-when-true-listp
(implies (true-listp x)
(equal (true-list-fix x) x)))
(defthm true-list-fix-of-coerce
(equal (true-list-fix (coerce text 'list))
(coerce text 'list)))
(defthm len-of-true-list-fix
(equal (len (true-list-fix x)) (len x)))
(defthm nth-of-make-character-list
(equal (nth n (make-character-list x))
(cond ((>= (nfix n) (len x)) nil)
((characterp (nth n x)) (nth n x))
(t (code-char 0)))))
(defthm nth-of-first-n-ac
(equal (nth n (first-n-ac i l ac))
(cond ((>= (nfix n) (+ (len ac) (nfix i)))
nil)
((< (nfix n) (len ac))
(nth (- (len ac) (+ (nfix n) 1)) ac))
(t (nth (- (nfix n) (len ac)) l)))))
;; Contributed to books/std/lists/nth.lisp
(defthm nth-of-take
(equal (nth i (take n l))
(if (< (nfix i) (nfix n))
(nth i l)
nil)))
(defthm nthcdr-of-nil (equal (nthcdr n nil) nil))
(defthm nthcdr-when->=-n-len-l
(implies (and (true-listp l)
(>= (nfix n) (len l)))
(equal (nthcdr n l) nil)))
(defthm revappend-of-revappend
(equal (revappend (revappend x y1) y2)
(revappend y1 (append x y2)))
:hints
(("goal" :in-theory (disable revappend-of-binary-append-1))))
(defthm
character-listp-of-member
(implies (character-listp lst)
(character-listp (member-equal x lst)))
:rule-classes
(:rewrite
(:rewrite
:corollary
(implies (and (character-listp lst)
(consp (member-equal x lst)))
(character-listp (cdr (member-equal x lst)))))))
(defthm true-listp-of-member
(implies (true-listp lst)
(true-listp (member-equal x lst)))
:rule-classes
(:rewrite
(:rewrite
:corollary
(implies (and (true-listp lst)
(consp (member-equal x lst)))
(true-listp (cdr (member-equal x lst)))))))
(defthm len-of-member
(<= (len (member-equal x lst))
(len lst))
:rule-classes :linear)
(defthm len-of-remove1-assoc
(implies (consp (assoc-equal key alist))
(equal (len (remove1-assoc-equal key alist))
(- (len alist) 1))))
;; Contributed to books/std/lists/remove1-equal.lisp
(defthm len-of-remove1-equal
(equal (len (remove1-equal x l))
(if (member-equal x l)
(- (len l) 1)
(len l))))
(defthm
assoc-of-remove1-assoc
(implies
(and (case-split (not (null key1)))
(not (consp (assoc-equal key1 alist))))
(not (consp (assoc-equal key1
(remove1-assoc-equal key2 alist))))))
;; Contributed to books/std/lists/remove1-equal.lisp
(defthm
assoc-equal-of-remove1-equal
(implies
(and (not (equal key1 nil))
(not (consp (assoc-equal key1 alist))))
(not (consp (assoc-equal key1 (remove1-equal x alist)))))
:rule-classes (:rewrite :type-prescription))
(defthm assoc-of-car-when-member
(implies (and (member-equal x lst)
(or (not (equal (car x) nil)) (alistp lst)))
(consp (assoc-equal (car x) lst))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/nthcdr.lisp, from where it was taken with thanks.
(defthm car-of-nthcdr
(equal (car (nthcdr i x))
(nth i x)))
(defthm stringp-of-nth
(implies (string-listp l)
(iff (stringp (nth n l))
(< (nfix n) (len l)))))
(defthm string-listp-of-update-nth
(implies (string-listp l)
(equal (string-listp (update-nth key val l))
(and (<= (nfix key) (len l))
(stringp val)))))
(defthm revappend-of-binary-append-2
(equal (revappend (binary-append x y1) y2)
(revappend y1 (revappend x y2))))
(defthm add-pair-of-add-pair-1
(equal (add-pair key value2 (add-pair key value1 l))
(add-pair key value2 l)))
(defthm princ$-of-princ$
(implies (and (stringp x) (stringp y))
(equal (princ$ y channel (princ$ x channel state))
(princ$ (string-append x y) channel state))))
(defthmd
painful-debugging-lemma-1
(implies (and (integerp x) (integerp y))
(integerp (+ x y))))
(defthmd
painful-debugging-lemma-2
(implies (and (integerp x) (integerp y))
(integerp (* x y))))
(defthmd painful-debugging-lemma-3
(implies (integerp x)
(integerp (unary-- x))))
(defthmd painful-debugging-lemma-4
(equal (<= x (+ x y)) (>= y 0))
:rule-classes
((:rewrite :corollary (equal (< (+ x y) x) (< y 0)))))
(defthmd painful-debugging-lemma-5
(implies (and (>= x 0) (>= y 0))
(not (< (+ x y) 0))))
(defthm
painful-debugging-lemma-6
(equal (- (- x)) (fix x)))
(defthmd
painful-debugging-lemma-7
(implies (not (zp x1))
(equal (< 0 (* x1 (len x2)))
(consp x2))))
(defthmd
painful-debugging-lemma-12
(implies
(and (integerp x) (integerp y))
(iff (equal (+ x (- y)) 0)
(equal x y))))
(defthmd painful-debugging-lemma-13
(implies (and (integerp x) (integerp y) (< x y))
(<= (+ 1 x) y)))
;; The following is redundant with the eponymous theorem in
;; books/std/typed-lists/integer-listp.lisp, from where it was taken with
;; thanks.
(defthm
integerp-of-nth-when-integer-listp
(implies (integer-listp x)
(iff (integerp (nth n x))
(< (nfix n) (len x)))))
(defthm true-list-listp-of-append
(equal (true-list-listp (append x y))
(and (true-list-listp (true-list-fix x)) (true-list-listp y))))
(defthmd rationalp-of-nth-when-rational-listp
(implies (rational-listp x)
(iff (rationalp (nth n x))
(< (nfix n) (len x)))))
(defthm
member-of-remove1-assoc
(implies
(not (member-equal x lst))
(not (member-equal x (remove1-assoc-equal key lst)))))
(defthm acl2-count-of-true-list-fix
(<= (acl2-count (true-list-fix x))
(acl2-count x))
:rule-classes :linear)
(defthmd
update-nth-of-revappend
(equal (update-nth key val (revappend x y))
(if (< (nfix key) (len x))
(revappend (update-nth (- (len x) (+ 1 (nfix key)))
val x)
y)
(revappend x
(update-nth (- (nfix key) (len x))
val y)))))
(defthm
true-listp-of-update-nth
(equal (true-listp (update-nth key val l))
(or (>= (nfix key) (len l))
(true-listp l)))
:hints (("goal" :in-theory (enable update-nth)
:induct (update-nth key val l)
:expand ((true-listp l)
(:free (x y)
(true-listp (cons x y)))))))
(defthm nthcdr-of-nthcdr
(equal (nthcdr a (nthcdr b x))
(nthcdr (+ (nfix a) (nfix b)) x))
:hints(("goal" :induct (nthcdr b x))))
(defthm acl2-count-of-member
(<= (acl2-count (member-equal x lst))
(acl2-count lst))
:rule-classes :linear)
(defthm
string-listp-of-resize-list
(implies (and (string-listp lst)
(stringp default-value))
(string-listp (resize-list lst n default-value))))
(encapsulate
()
(local
(defthm
update-nth-of-first-n-ac
(implies
(< (nfix key) (+ (nfix i) (len ac)))
(equal
(update-nth key val (first-n-ac i l ac))
(if (< (nfix key) (len ac))
(first-n-ac i l
(update-nth (- (len ac) (+ (nfix key) 1))
val ac))
(first-n-ac i
(update-nth (- (nfix key) (len ac))
val l)
ac))))
:hints (("goal" :induct (first-n-ac i l ac)
:in-theory (enable update-nth-of-revappend)))))
(defthm
first-n-ac-of-update-nth
(equal (first-n-ac i (update-nth key val l) ac)
(if (< (nfix key) (nfix i))
(update-nth (+ (nfix key) (len ac))
val (first-n-ac i l ac))
(first-n-ac i l ac)))
:hints
(("goal" :induct (mv (first-n-ac i l ac)
(update-nth key val l))))))
(defthm take-of-update-nth
(equal (take n (update-nth key val l))
(if (< (nfix key) (nfix n))
(update-nth key val (take n l))
(take n l))))
(encapsulate
()
(local
(defthmd lemma
(implies (and (equal (nfix key) (- (len l) 1))
(true-listp l))
(equal (revappend ac (update-nth key val l))
(append (first-n-ac key l ac)
(list val))))
:hints (("goal" :induct (mv (first-n-ac key l ac)
(update-nth key val l))
:expand ((len l) (len (cdr l)))))))
(defthmd
remember-that-time-with-update-nth
(implies (and (equal (nfix key) (- (len l) 1))
(true-listp l))
(equal (update-nth key val l)
(append (take key l) (list val))))
:hints
(("goal"
:use (:instance lemma
(ac nil))))))
(defthmd take-of-nthcdr
(equal (take n1 (nthcdr n2 l))
(nthcdr n2 (take (+ (nfix n1) (nfix n2)) l))))
(defthm
put-assoc-equal-without-change
(iff (equal (put-assoc-equal name val alist)
alist)
(and (consp (assoc-equal name alist))
(equal (cdr (assoc-equal name alist))
val)))
:rule-classes
((:rewrite
:corollary (implies (not (and (consp (assoc-equal name alist))
(equal (cdr (assoc-equal name alist))
val)))
(not (equal (put-assoc-equal name val alist)
alist))))
(:rewrite :corollary (implies (and (consp (assoc-equal name alist))
(equal (cdr (assoc-equal name alist))
val))
(equal (put-assoc-equal name val alist)
alist)))))
;; Contributed to books/std/lists/remove1-equal.lisp
(defthm member-equal-of-remove1-equal
(implies (not (equal x1 x2))
(iff (member-equal x1 (remove1-equal x2 l))
(member-equal x1 l))))
;; Contributed to books/std/lists/intersection.lisp
(defthm
member-of-intersection$
(iff (member a (intersection$ x y))
(and (member a x) (member a y)))
:rule-classes
(:rewrite
(:type-prescription
:corollary
(implies (not (member a x))
(not (member a (intersection$ x y)))))
(:type-prescription
:corollary
(implies (not (member a y))
(not (member a (intersection$ x y)))))))
(defthm
nth-of-intersection$
(implies (< (nfix n)
(len (intersection-equal x y)))
(and
(member-equal (nth n (intersection-equal x y))
x)
(member-equal (nth n (intersection-equal x y))
y)))
:hints
(("goal"
:in-theory (disable member-of-intersection$)
:use (:instance member-of-intersection$
(a (nth n (intersection-equal x y)))))))
(defthm
member-of-strip-cars-of-remove-assoc
(iff
(member-equal x1
(strip-cars (remove-assoc-equal x2 alist)))
(and
(member-equal x1 (strip-cars alist))
(not (equal x1 x2)))))
(defthm
no-duplicatesp-of-strip-cars-of-remove-assoc
(implies (no-duplicatesp-equal (strip-cars alist))
(no-duplicatesp-equal
(strip-cars (remove-assoc-equal x alist)))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/take.lisp, from where it was taken with thanks.
(defthm take-fewer-of-take-more
(implies (<= (nfix a) (nfix b))
(equal (take a (take b x)) (take a x))))
(defthm len-of-remove-when-no-duplicatesp
(implies (no-duplicatesp-equal l)
(equal (len (remove-equal x l))
(if (member-equal x l)
(- (len l) 1)
(len l)))))
(defthm no-duplicatesp-of-remove
(implies (no-duplicatesp-equal l)
(no-duplicatesp-equal (remove-equal x l))))
(encapsulate
()
;; The following is redundant with the eponymous function in
;; books/std/basic/inductions.lisp, from where it was taken with thanks.
(local
(defun dec-dec-induct (n m)
(if (or (zp n)
(zp m))
nil
(dec-dec-induct (- n 1) (- m 1)))))
(local
(defthm take-of-make-list-ac-lemma-1
(implies (not (zp n1))
(equal (cons val (make-list-ac (+ -1 n1) val nil))
(make-list-ac n1 val nil)))
:hints (("Goal" :in-theory (disable cons-car-cdr make-list-ac)
:use ((:instance cons-car-cdr
(x (make-list-ac n1 val nil))))))))
(defthm take-of-make-list-ac
(implies (<= (nfix n1) (nfix n2))
(equal (take n1 (make-list-ac n2 val ac))
(make-list-ac n1 val nil)))
:hints (("goal" :induct (dec-dec-induct n1 n2)))))
(defthm stringp-of-append
(equal (stringp (append x y)) (and (atom x) (stringp y))))
(defthm remove-assoc-of-put-assoc
(equal (remove-assoc key (put-assoc name val alist))
(if
(equal key name)
(remove-assoc key alist)
(put-assoc name val (remove-assoc key alist)))))
(defthm last-of-member
(equal (last (member-equal x lst))
(if (member-equal x lst)
(last lst)
nil)))
(defthm integerp-of-car-of-last-when-integer-listp
(implies (integer-listp l)
(equal
(integerp (car (last l)))
(consp l))))
(defthm non-negativity-of-car-of-last-when-nat-listp
(implies (nat-listp l)
(<= 0 (car (last l))))
:rule-classes :linear)
(defthm len-of-put-assoc-equal
(implies (not (null name))
(equal (len (put-assoc-equal name val alist))
(if (consp (assoc-equal name alist))
(len alist)
(+ 1 (len alist))))))
(defthm remove-assoc-when-absent-1
(implies (and
(atom (assoc-equal x alist))
(case-split (not (null x))))
(equal (remove-assoc-equal x alist)
(true-list-fix alist))))
(defthm remove-assoc-when-absent-2
(implies (and (not (null x))
(atom (assoc-equal x alist)))
(equal (remove-assoc-equal x (remove-assoc-equal y alist))
(remove-assoc-equal y alist)))
:hints (("Goal" :in-theory (disable)
:use (:instance remove-assoc-when-absent-1
(alist (remove-assoc-equal y alist)))) ))
(defthm
remove-assoc-of-remove-assoc
(equal (remove-assoc x1 (remove-assoc x2 alist))
(remove-assoc x2 (remove-assoc x1 alist))))
(defthm len-of-remove-assoc-1
(<= (len (remove-assoc-equal x alist))
(len alist))
:rule-classes :linear)
(defthm len-of-remove-assoc-2
(implies (consp (assoc-equal x alist))
(< (len (remove-assoc-equal x alist))
(len alist)))
:rule-classes :linear)
(defthm
member-of-strip-cars
(implies (case-split (not (null x)))
(iff
(member-equal x (strip-cars alist))
(consp (assoc-equal x alist)))))
(defthm len-of-remove-assoc-when-no-duplicatesp-strip-cars
(implies (and (no-duplicatesp-equal (strip-cars alist))
(not (null x)))
(equal (len (remove-assoc-equal x alist))
(if (atom (assoc-equal x alist))
(len alist)
(- (len alist) 1)))))
(defthm strip-cars-of-remove-assoc
(equal (strip-cars (remove-assoc-equal x alist))
(remove-equal x (strip-cars alist))))
(defthm strip-cars-of-put-assoc
(implies (case-split (not (null name)))
(equal (strip-cars (put-assoc-equal name val alist))
(if (consp (assoc-equal name alist))
(strip-cars alist)
(append (strip-cars alist)
(list name))))))
(defthm remove-when-absent
(implies (not (member-equal x l))
(equal (remove-equal x l)
(true-list-fix l))))
(defthmd intersectp-when-member
(implies (member-equal x l)
(iff (intersectp-equal l y)
(or (intersectp-equal (remove-equal x l) y)
(member-equal x y))))
:hints (("goal" :in-theory (e/d (intersectp-equal)
(intersectp-is-commutative)))))
(defthm consp-of-assoc-equal-of-append
(implies (not (null name))
(equal (consp (assoc-equal name (append x y)))
(or (consp (assoc-equal name x))
(consp (assoc-equal name y))))))
(defthm consp-of-assoc-of-remove
(implies (and (not (null x1))
(not (consp (assoc-equal x1 l))))
(not (consp (assoc-equal x1 (remove-equal x2 l)))))
:rule-classes :type-prescription)
(defthm strip-cars-of-append
(equal (strip-cars (append x y))
(append (strip-cars x) (strip-cars y))))
(defthm remove-of-append
(equal (remove-equal x1 (append x2 y))
(append (remove-equal x1 x2)
(remove-equal x1 y))))
(defthm
remove-of-strip-cars-of-remove
(implies (atom x)
(equal (remove-equal nil (strip-cars (remove-equal x alist)))
(remove-equal nil (strip-cars alist)))))
(defthm assoc-of-append-1
(implies (case-split (not (null x1)))
(equal (assoc-equal x1 (append x2 y))
(if (consp (assoc-equal x1 x2))
(assoc-equal x1 x2)
(assoc-equal x1 y)))))
(defthm assoc-of-append-2
(implies (and (atom (assoc-equal nil x))
(atom (assoc-equal nil y)))
(not (consp (assoc-equal nil (append x y)))))
:rule-classes (:rewrite :type-prescription))
(encapsulate
()
(local (defthm lemma-1
(iff (equal (cons (car x) y) x)
(and (consp x) (equal (cdr x) y)))))
(local
(defthm
lemma-2
(iff (equal alist (put-assoc-equal name val alist))
(and (consp (assoc-equal name alist))
(equal (cdr (assoc-equal name alist))
val)))
:rule-classes
(:rewrite
(:rewrite
:corollary (iff (equal (put-assoc-equal name val alist)
alist)
(and (consp (assoc-equal name alist))
(equal (cdr (assoc-equal name alist))
val)))))))
(defthmd put-assoc-equal-match
(iff (equal (put-assoc-equal name1 val1 alist)
(put-assoc-equal name2 val2 alist))
(or (and (equal name1 name2)
(equal val1 val2))
(and (consp (assoc-equal name1 alist))
(equal (cdr (assoc-equal name1 alist))
val1)
(consp (assoc-equal name2 alist))
(equal (cdr (assoc-equal name2 alist))
val2))))))
(defthm assoc-of-remove
(implies (and (atom x1) (case-split (not (null x2))))
(equal (assoc-equal x2 (remove-equal x1 l))
(assoc-equal x2 l))))
(defthm member-of-car-of-nth-in-strip-cars
(implies (< (nfix n) (len l))
(member-equal (car (nth n l))
(strip-cars l))))
(defthm
assoc-of-car-of-nth
(implies (and (no-duplicatesp-equal (strip-cars l))
(< (nfix n) (len l)))
(equal (assoc-equal (car (nth n l)) l)
(nth n l)))
:hints
(("goal" :induct (mv (assoc-equal (car (nth n l)) l)
(len l)
(nth n l)))
("subgoal *1/1"
:in-theory (disable (:rewrite member-of-car-of-nth-in-strip-cars))
:use (:instance (:rewrite member-of-car-of-nth-in-strip-cars)
(l (cdr l))
(n (+ -1 n))))))
(defthm consp-of-nth-when-alistp
(implies (and (alistp l) (< (nfix n) (len l)))
(consp (nth n l))))
(defthm member-equal-of-strip-cars-of-put-assoc
(iff (member-equal x
(strip-cars (put-assoc-equal name val alist)))
(or (equal x name)
(member-equal x (strip-cars alist)))))
(defthm
no-duplicatesp-of-strip-cars-of-put-assoc
(equal (no-duplicatesp-equal (strip-cars (put-assoc-equal name val alist)))
(no-duplicatesp-equal (strip-cars alist))))
(defthm nth-when->=-n-len-l
(implies (>= (nfix n) (len l))
(equal (nth n l) nil)))
(defthm strip-cars-of-remove1-assoc
(equal (strip-cars (remove1-assoc-equal key alist))
(remove1-equal key (strip-cars alist))))
(defthm
intersectp-equal-of-strip-cars-of-remove-equal
(implies
(not (intersectp-equal x1 (remove-equal nil (strip-cars lst))))
(not (intersectp-equal
x1
(remove-equal nil
(strip-cars (remove-equal x2 lst))))))
:hints (("goal" :in-theory (e/d (intersectp-equal)
(intersectp-is-commutative)))))
(defthm intersectp-of-remove
(implies (not (intersectp-equal l1 l2))
(not (intersectp-equal (remove-equal x l1)
l2)))
:hints (("goal" :in-theory (enable intersectp-equal)))
:rule-classes
(:type-prescription
(:type-prescription
:corollary
(implies (not (intersectp-equal l1 l2))
(not (intersectp-equal l2
(remove-equal x l1)))))))
(defthm remove-of-remove
(equal (remove-equal x1 (remove-equal x2 l))
(remove-equal x2 (remove-equal x1 l))))
(defthm remove1-assoc-of-append
(equal (remove1-assoc key (append x y))
(if (equal (remove1-assoc key x)
(true-list-fix x))
(append x (remove1-assoc key y))
(append (remove1-assoc key x) y))))
(defthm remove1-assoc-when-absent
(implies (not (null key))
(iff
(equal (remove1-assoc key alist) (true-list-fix alist))
(atom (assoc key alist))))
:rule-classes
((:rewrite
:corollary
(implies (and
(not (null key))
(atom (assoc key alist)))
(equal (remove1-assoc key alist) (true-list-fix alist))))
(:rewrite
:corollary
(implies (and
(not (null key))
(consp (assoc key alist)))
(not
(equal (remove1-assoc key alist) (true-list-fix alist)))))
(:rewrite
:corollary
(implies (and
(not (null key))
(consp (assoc key alist))
(true-listp alist))
(not
(equal (remove1-assoc key alist) alist))))))
(defthm put-assoc-of-put-assoc-1
(equal (put-assoc-equal name val2 (put-assoc-equal name val1 alist))
(put-assoc-equal name val2 alist)))
(defthm
put-assoc-of-put-assoc-2
(implies (and (or (consp (assoc-equal name1 alist))
(consp (assoc-equal name2 alist)))
(not (equal name1 name2)))
(equal (put-assoc-equal name1
val1 (put-assoc-equal name2 val2 alist))
(put-assoc-equal name2 val2
(put-assoc-equal name1 val1 alist)))))
(defthm put-assoc-of-append
(implies (not (null name))
(equal (put-assoc-equal name val (append x y))
(if (atom (assoc-equal name x))
(append x (put-assoc-equal name val y))
(append (put-assoc-equal name val x)
y)))))
;; This is disabled because I cannot decide on a normal form.
(defthmd put-assoc-of-remove
(implies (and (not (null name)) (atom x))
(equal (remove-equal x (put-assoc-equal name val alist))
(put-assoc-equal name val (remove-equal x alist)))))
(defthm member-of-put-assoc
(implies (and (atom x) (case-split (not (null name))))
(iff (member x (put-assoc-equal name val alist))
(member x alist))))
(defthm
consp-of-remove-assoc-1
(implies (and (not (equal x2 x1))
(consp (assoc-equal x1 alist)))
(consp (remove-assoc-equal x2 alist))))
(defthm assoc-of-true-list-fix
(equal (assoc-equal x (true-list-fix l))
(assoc-equal x l))
:hints (("goal" :in-theory (enable true-list-fix))))
(defthm strip-cars-of-true-list-fix
(equal (strip-cars (true-list-fix x)) (strip-cars x)))
(defthm remove-assoc-of-true-list-fix
(equal (remove-assoc-equal x (true-list-fix alist))
(remove-assoc-equal x alist)))
(defthm put-assoc-equal-of-true-list-fix
(equal (put-assoc-equal name val (true-list-fix alist))
(true-list-fix (put-assoc-equal name val alist))))
(defthmd len-when-consp
(implies (consp x) (not (zp (len x))))
:rule-classes :type-prescription)
(defthm subsetp-of-strip-cars-of-put-assoc
(implies (and (subsetp-equal (strip-cars x) l)
(member-equal key l))
(subsetp-equal (strip-cars (put-assoc-equal key val x))
l)))
(defthm position-equal-ac-of-nthcdr
(implies (not (member-equal item (take n lst)))
(equal (position-equal-ac item (nthcdr n lst)
ac)
(position-equal-ac item lst (- ac (nfix n))))))
(defthm position-equal-ac-of-+
(equal (position-equal-ac item lst (+ acc n))
(if (member-equal item lst)
(+ n (position-equal-ac item lst acc))
nil)))
(defthm position-equal-ac-when-member
(implies (and (member-equal item lst) (natp acc))
(and
(< (position-equal-ac item lst acc) (+ acc (len lst)))
(natp (position-equal-ac item lst acc))))
:rule-classes
((:type-prescription
:corollary
(implies (and (member-equal item lst) (natp acc))
(natp (position-equal-ac item lst acc))))
(:linear
:corollary
(implies (and (member-equal item lst) (natp acc))
(and
(< (position-equal-ac item lst acc) (+ acc (len lst)))
(<= 0 (position-equal-ac item lst acc)))))))
(defthmd nth-of-position-equal-ac
(implies (member-equal item lst)
(equal (nth (- (position-equal-ac item lst acc) acc)
lst)
item)))
(defthm position-equal-ac-of-nth
(implies (and (no-duplicatesp-equal l)
(< (nfix n) (len l)))
(equal (position-equal-ac (nth n l) l acc)
(+ acc (nfix n))))
:hints (("goal" :induct (mv (position-equal-ac (nth n l) l acc)
(nth n l))
:in-theory (disable member-equal-nth))
("subgoal *1/2" :use (:instance member-equal-nth (l (cdr l))
(n (+ -1 n))))))
(defthm position-equal-ac-of-take
(implies (and (member-equal item (take n l))
(<= (nfix n) (len l)))
(equal (position-equal-ac item (take n l) ac)
(position-equal-ac item l ac))))
(defthm position-equal-ac-when-member-of-take
(implies (and (member-equal x (take n l))
(<= (nfix n) (len l)))
(<= (position-equal-ac x l acc)
(+ (nfix n) acc)))
:rule-classes :linear)
(encapsulate
()
(local (in-theory (disable position-equal)))
(defthm position-of-nthcdr
(implies (and (true-listp lst)
(not (member-equal item (take n lst)))
(member-equal item lst))
(equal (position-equal item (nthcdr n lst))
(- (position-equal item lst) (nfix n))))
:hints (("goal" :in-theory (e/d (position-equal)
((:rewrite position-equal-ac-of-+)))
:do-not-induct t
:use (:instance (:rewrite position-equal-ac-of-+)
(n (- (nfix n)))
(acc 0)
(lst lst)
(item item)))))
(defthm position-when-member
(implies (member-equal item lst)
(and
(natp (position-equal item lst))
(< (position-equal item lst) (len lst))))
:hints (("goal" :in-theory (enable position-equal)))
:rule-classes
((:type-prescription
:corollary
(implies (member-equal item lst)
(natp (position-equal item lst))))
(:linear
:corollary
(implies (member-equal item lst)
(and
(<= 0 (position-equal item lst))
(< (position-equal item lst) (len lst)))))
(:rewrite
:corollary
(implies (member-equal item lst)
(and
(integerp (position-equal item lst))
(acl2-numberp (position-equal item lst)))))))
(defthm nth-of-position-equal
(implies (member-equal item lst)
(equal (nth (position-equal item lst) lst)
item))
:hints (("goal" :in-theory (enable position-equal)
:use (:instance nth-of-position-equal-ac (acc 0)))))
(defthm position-equal-of-nth
(implies (and (no-duplicatesp-equal l)
(< (nfix n) (len l)))
(equal (position-equal (nth n l) l)
(nfix n)))
:hints (("Goal" :in-theory (enable position-equal))))
(defthm position-of-take
(implies (and (member-equal item (take n l))
(<= (nfix n) (len l)))
(equal (position-equal item (take n l))
(position-equal item l)))
:hints (("goal" :in-theory (enable position-equal))))
(defthm
position-when-member-of-take
(implies (and (member-equal x (take n l))
(<= (nfix n) (len l)))
(<= (position-equal x l) (nfix n)))
:hints (("goal" :in-theory (e/d (position-equal)
(position-equal-ac-when-member-of-take))
:use (:instance position-equal-ac-when-member-of-take
(acc 0))))
:rule-classes :linear))
;; Contributed to books/std/lists/nthcdr.lisp
(defthm
subsetp-of-nthcdr
(subsetp-equal (nthcdr n l) l))
(defthm no-duplicatesp-equal-of-nthcdr
(implies (no-duplicatesp-equal l)
(no-duplicatesp-equal (nthcdr n l))))
(defthm remove-assoc-of-append
(equal (remove-assoc-equal x (append alist1 alist2))
(append (remove-assoc-equal x alist1)
(remove-assoc-equal x alist2))))
(defthm nat-listp-of-take
(implies (nat-listp l)
(iff (nat-listp (take n l))
(<= (nfix n) (len l)))))
(defthm assoc-when-zp-len
(implies (zp (len alist))
(atom (assoc-equal x alist)))
:rule-classes :type-prescription)
(defthmd
member-of-take
(implies (and (true-listp l)
(< (nfix n) (len l)))
(iff (member-equal x (take n l))
(and (member-equal x l)
(< (position-equal x l) (nfix n)))))
:hints (("goal" :induct (mv (member-equal x l) (take n l))
:expand (position-equal (car l) l))
("subgoal *1/2" :in-theory (disable (:rewrite position-of-nthcdr))
:use (:instance (:rewrite position-of-nthcdr)
(lst l)
(n 1)
(item x)))
("subgoal *1/1.1'"
:in-theory (disable (:type-prescription position-when-member))
:use (:instance (:type-prescription position-when-member)
(lst l)
(item x)))))
(defthm position-of-cdr
(implies (and (true-listp lst)
(not (equal item (car lst)))
(member-equal item lst))
(equal (position-equal item (cdr lst))
(- (position-equal item lst) 1)))
:hints (("goal" :in-theory (e/d (position-equal)
(position-of-nthcdr))
:use (:instance position-of-nthcdr (n 1)))))
(defthm member-equal-nth-take-when-no-duplicatesp
(implies (and (equal x (nth n l))
(< (nfix n) (len l))
(no-duplicatesp-equal l))
(not (member-equal x (take n l)))))
(defthmd consp-of-set-difference$
(iff (consp (set-difference-equal l1 l2))
(not (subsetp-equal l1 l2))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/sets.lisp, from where it was taken with thanks.
(defthm member-of-set-difference-equal
(iff (member a (set-difference-equal x y))
(and (member a x) (not (member a y))))
:hints (("goal" :induct (len x))))
(defthm no-duplicatesp-of-set-difference$
(implies
(no-duplicatesp-equal l1)
(no-duplicatesp-equal (set-difference-equal l1 l2))))
(encapsulate
()
(local (defthmd lemma-1
(implies (atom l2)
(equal (set-difference-equal l1 l2)
(true-list-fix l1)))))
(local
(defthmd
lemma-2
(implies
(consp l2)
(equal
(set-difference-equal l1 l2)
(remove-equal (car l2)
(set-difference-equal l1 (cdr l2)))))))
(defthmd
set-difference$-redefinition
(equal
(set-difference-equal l1 l2)
(if (atom l2)
(true-list-fix l1)
(remove-equal (car l2)
(set-difference-equal l1 (cdr l2)))))
:hints (("goal" :use (lemma-1 lemma-2)))
:rule-classes ((:definition :install-body nil))))
(defthm len-of-remove-when-member-1
(implies (member-equal x l)
(< (len (remove-equal x l)) (len l)))
:rule-classes :linear)
(defthm
len-of-set-difference$-when-subsetp
(implies (and (subsetp-equal x y)
(no-duplicatesp-equal x))
(<= (+ (len x)
(len (set-difference-equal y x)))
(len y)))
:hints
(("goal"
:in-theory (e/d (set-difference$-redefinition subsetp-equal)
(set-difference-equal))))
:rule-classes :linear)
(defthm member-of-remove-duplicates
(iff (member-equal x (remove-duplicates-equal lst))
(member-equal x lst)))
(defthm no-duplicatesp-of-remove-duplicates
(no-duplicatesp-equal (remove-duplicates-equal l)))
(defthm len-of-strip-cars (equal (len (strip-cars x)) (len x)))
(defthm consp-of-last (iff (consp (last l)) (consp l)))
(defthm member-of-car-of-last
(implies (consp x)
(member-equal (car (last x)) x)))
(defthm append-of-take-and-last
(equal (append (take (+ -1 (len path)) path)
(last path))
path))
(defthm atom-of-cdr-of-last
(atom (cdr (last x)))
:rule-classes :type-prescription)
(defthm last-when-equal-len-1
(implies (equal (len l) 1) (equal (last l) l)))
;; The following two theorems are redundant with the eponymous theorems in
;; books/std/lists/resize-list.lisp, from where they were taken with thanks.
(defthm len-of-resize-list
(equal (len (resize-list lst n default))
(nfix n)))
(defthm resize-list-of-len-free
(implies (equal (nfix n) (len lst))
(equal (resize-list lst n default-value)
(true-list-fix lst))))
(defthm true-listp-of-put-assoc
(implies (not (null name))
(iff (true-listp (put-assoc-equal name val alist))
(or (true-listp alist)
(atom (assoc-equal name alist))))))
(defthm
assoc-after-remove1-assoc-when-no-duplicatesp
(implies (and (not (null name))
(no-duplicatesp-equal (remove-equal nil (strip-cars alist))))
(not (consp (assoc-equal name
(remove1-assoc-equal name alist))))))
(defthmd last-alt (equal (last x) (nthcdr (- (len x) 1) x)))
(defthm nat-listp-when-subsetp
(implies (and (subsetp-equal x y) (nat-listp y))
(nat-listp (true-list-fix x)))
:hints (("goal" :in-theory (enable subsetp-equal))))
;; The following is redundant with the eponymous theorem in
;; books/std/lists/remove.lisp, from where it was taken with thanks.
(defthm remove-of-set-difference-equal
(equal (remove a (set-difference-equal x y))
(set-difference-equal (remove a x) y)))
(defthm set-difference$-of-remove-when-member-1
(implies (member-equal a y)
(equal (set-difference-equal (remove a x) y)
(set-difference-equal x y))))
(defthm
set-difference$-of-intersection$-1
(equal (set-difference-equal l1 (intersection-equal l1 l2))
(set-difference-equal l1 l2))
:hints
(("goal"
:induct (mv (intersection-equal l1 l2)
(set-difference-equal l1 l2))
:expand
(:with set-difference$-redefinition
(set-difference-equal l1
(cons (car l1)
(intersection-equal (cdr l1) l2)))))))
(defthm len-of-put-assoc-equal-2
(implies (consp (assoc-equal name alist))
(equal (len (put-assoc-equal name val alist))
(len alist))))
(defthm intersection$-of-remove-1
(equal (intersection-equal y (remove-equal x l))
(if (not (member-equal x y))
(intersection-equal y l)
(remove-equal x (intersection-equal y l)))))
(defthm set-difference$-when-not-intersectp
(implies (not (intersectp-equal x y))
(equal (set-difference-equal x y)
(true-list-fix x))))
(defthm set-difference$-of-append-2
(equal (set-difference-equal x (append x y))
nil))
(defthm
set-difference$-of-self-lemma-1
(equal (set-difference-equal x (append y nil)) (set-difference-equal x y)))
(defthm
set-difference$-of-self
(equal (set-difference-equal x x) nil)
:hints (("goal" :in-theory (disable set-difference$-of-append-2)
:use (:instance set-difference$-of-append-2 (y nil)))))
(defthm set-difference$-of-append-1
(equal (set-difference-equal (append x y) z)
(append (set-difference-equal x z)
(set-difference-equal y z))))
(defthm remove-duplicates-when-no-duplicatesp
(implies (no-duplicatesp-equal x)
(equal (remove-duplicates-equal x)
(true-list-fix x))))
(defthm
not-intersectp-of-set-difference$-when-subsetp-1
(implies (subsetp-equal z y)
(not (intersectp-equal z (set-difference-equal x y))))
:rule-classes
(:rewrite
(:rewrite
:corollary (implies (subsetp-equal z y)
(not (intersectp-equal (set-difference-equal x y)
z))))))
(defthm subsetp-of-set-difference$
(subsetp-equal (set-difference-equal x y)
x))
(defthm alistp-of-append
(equal (alistp (append x y))
(and (alistp (true-list-fix x))
(alistp y))))
;; Contributed to books/std/lists/take.lisp
(defthmd take-as-append-and-nth
(equal (take n l)
(if (zp n)
nil
(append (take (- n 1) l)
(list (nth (- n 1) l)))))
:rule-classes ((:definition :install-body nil)))
(defthm consp-of-assoc-of-nth-of-strip-cars
(implies (not (null (nth n (strip-cars alist))))
(consp (assoc-equal (nth n (strip-cars alist))
alist)))
:hints (("goal" :in-theory (disable (:rewrite member-equal-nth)
(:rewrite member-of-strip-cars))
:use ((:instance (:rewrite member-equal-nth)
(l (strip-cars alist))
(n n))
(:instance (:rewrite member-of-strip-cars)
(alist alist)
(x (nth n (strip-cars alist))))))))
(defthmd painful-debugging-lemma-21
(equal (+ x (- x) y) (fix y))
:hints (("goal" :in-theory (disable (:e force)))))
(encapsulate () (local (in-theory (disable fix)))
(defthm fix-when-acl2-numberp
(implies (acl2-numberp x)
(equal (fix x) x))
:hints (("goal" :in-theory (enable fix)))))
(encapsulate () (local (in-theory (disable length string-append)))
(defthm length-of-string-append
(equal (length (string-append str1 str2))
(+ (len (coerce str1 'list))
(len (coerce str2 'list))))
:hints (("goal" :in-theory (enable length string-append)))))
(encapsulate () (local (in-theory (disable nfix)))
(defthm
nfix-of-position-ac-linear
(implies (<= 0 acc)
(<= (nfix (position-equal-ac item lst acc))
(+ acc (len lst))))
:rule-classes :linear :hints (("Goal" :in-theory (enable nfix)))))
(encapsulate () (local (in-theory (disable length)))
(defthm
length-when-stringp
(implies (stringp x)
(equal
(length x)
(len (coerce x 'list))))
:hints (("goal" :in-theory (enable length)))))
(encapsulate () (local (in-theory (disable string-append)))
(defthm string-append-of-empty-string-1
(equal (string-append "" str2)
(if (stringp str2) str2 ""))
:hints (("goal" :in-theory (enable string-append))))
(defthm string-append-of-empty-string-2
(equal (string-append str1 "")
(if (stringp str1) str1 ""))
:hints (("goal" :in-theory (enable string-append)))))
(encapsulate () (local (in-theory (disable nfix natp)))
(defthm nfix-when-natp
(implies (natp x) (equal (nfix x) x))
:hints (("goal" :do-not-induct t
:in-theory (enable nfix natp))))
(defthm nfix-when-zp
(implies (zp x) (equal (nfix x) 0))
:hints (("goal" :in-theory (enable nfix natp)))))
;; The following are redundant with the eponymous theorems in
;; books/std/lists/take.lisp, from where they were taken with thanks.
(defthm take-of-append
(equal (take n (append x y))
(if (< (nfix n) (len x))
(take n x)
(append x (take (- n (len x)) y))))
:hints (("goal" :induct (take n x))))
(encapsulate () (local (in-theory (disable subseq string-append)))
(local
(defthm lemma-1 (iff (equal (len (coerce str1 'list)) 0)
(equal (coerce str1 'list) nil))
:hints
(("goal" :expand (len (coerce str1 'list))))))
(local
(defthmd lemma-2
(implies (and (<= 0 (- start)) (<= 0 start))
(integerp (- start)))))
;; There's no simple way to reduce the number of cases here.
(defthm subseq-of-string-append
(equal (subseq (string-append str1 str2) start end)
(cond ((and (not (stringp str2)) (not (stringp str1))) (subseq "" start end))
((not (stringp str1)) (subseq str2 start end))
((not (stringp str2)) (subseq str1 start end))
((and (integerp start) (<= (length str1) end)
(<= start (length str1)) (<= 0 start) (integerp end))
(string-append (subseq str1 start nil)
(subseq str2 0 (- end (length str1)))))
((and (< end (+ start (length str1))) (not (null end))
(natp (- end start)) (not (integerp start)))
(subseq str1 0 (- end start)))
((and (>= end (+ start (length str1))) (not (null end))
(integerp (- end start)) (not (integerp start)))
(string-append str1 (subseq str2 0 (- end (+ start (length str1))))))
((not (integerp (- start))) "")
((and (integerp start) (<= start (length str1)) (<= 0 start) (null end))
(string-append (subseq str1 start nil) str2))
((and (<= start 0) (equal (length str1) 0)
(not (null end)) (not (acl2-numberp end)))
(string-append str1 (subseq str2 0 (- start))))
((and (< (- start) (length str1)) (not (null end)) (not (acl2-numberp end)))
(subseq str1 0 (- start)))
((and (< start 0) (<= (length str1) (- start))
(not (null end)) (not (acl2-numberp end)))
(string-append str1 (subseq str2 0 (- (+ start (length str1))))))
((and (< start 0) (integerp end)
(<= (+ (length str1) start) end))
(string-append str1 (subseq str2 0 (- end (+ start (length str1))))))
((and (< (length str1) start) (null end)
(<= start (+ (length str1) (length str2))))
(subseq str2 (- start (length str1)) nil))
((and (< (length str1) start) (integerp end)
(<= start (+ (length str1) (length str2))))
(subseq str2 (- start (length str1)) (- end (length str1))))
((and (<= 0 start) (<= start end) (<= end (length str1)) (integerp end))
(subseq str1 start end))
((and (integerp start) (< start 0) (null end))
(string-append str1 (subseq str2 0 (- (length str2) start))))
((and (< start 0) (< end (+ start (length str1)))
(not (null end)) (<= start end))
(subseq str1 start end))
((and (integerp start) (< (+ (length str1) (length str2)) start))
(subseq "" start end))
((and (acl2-numberp end) (not (integerp end))) "")
((and (not (null end)) (< end start)) "")
(t (string-append str1 str2))))
:hints (("goal" :in-theory
(e/d (subseq string-append)
((:e force) (:rewrite coerce-inverse-1) (:rewrite coerce-inverse-2)))
:do-not-induct t
:use
((:instance painful-debugging-lemma-21 (x start) (y (- (length str1))))
(:theorem (iff (integerp (+ (- start) (length str1) (length str2)))
(integerp (- start))))
lemma-2
(:instance completion-of-coerce (y 'string)
(x (take (+ end (- start) (- (len (coerce str1 'list))))
(coerce str2 'list))))
(:instance completion-of-coerce (y 'string)
(x (append (coerce str1 'list)
(take (+ end (- start) (- (len (coerce str1 'list))))
(coerce str2 'list)))))
(:instance completion-of-coerce (y 'string)
(x (take (+ (- start) (len (coerce str2 'list))) (coerce str2 'list))))
(:instance completion-of-coerce (y 'string)
(x (append (coerce str1 'list)
(take (+ (- start) (len (coerce str2 'list)))
(coerce str2 'list)))))
(:instance completion-of-coerce (y 'string)
(x (take (+ end (- (len (coerce str1 'list))))
(coerce str2 'list))))
(:instance completion-of-coerce (y 'string)
(x (append (nthcdr start (coerce str1 'list))
(take (+ end (- (len (coerce str1 'list))))
(coerce str2 'list)))))
(:instance (:rewrite coerce-inverse-1)
(x (make-character-list (take (+ end (- start)
(- (len (coerce str1 'list))))
(coerce str2 'list)))))
(:instance (:rewrite coerce-inverse-1) (x (nthcdr start (coerce str1 'list))))
(:instance (:rewrite coerce-inverse-1)
(x (append (coerce str1 'list) (coerce str2 'list))))
(:instance (:rewrite coerce-inverse-1)
(x (take (+ end (- (len (coerce str1 'list)))) (coerce str2 'list))))
(:instance (:rewrite painful-debugging-lemma-21)
(x (len (coerce str1 'list))) (y (len (coerce str2 'list))))
(:instance (:rewrite coerce-inverse-1)
(x (make-character-list (take (+ (- start) (len (coerce str2 'list)))
(coerce str2 'list)))))
(:instance (:rewrite coerce-inverse-2) (x str1))
(:instance (:rewrite coerce-inverse-1)
(x (make-character-list
(take (- end (len (coerce str1 'list))) (coerce str2 'list)))))))))
(defthm then-subseq-empty-1
(implies (and (stringp seq)
(>= start (length seq)))
(equal (subseq seq start nil) ""))
:hints (("goal" :in-theory (enable subseq subseq-list))))
(defthm then-subseq-same-1
(implies (stringp seq)
(equal (subseq seq 0 nil) seq))
:hints (("goal" :in-theory (enable subseq subseq-list))))
(defthm subseq-of-length-1
(implies (equal (length seq) end)
(equal (subseq seq start end)
(subseq seq start nil)))
:hints (("goal" :do-not-induct t
:in-theory (enable subseq subseq-list))))
(defthm subseq-of-empty-list
(equal (subseq "" start end)
(coerce (take (+ end (- start)) nil) 'string))
:hints (("goal" :in-theory (enable subseq subseq-list))))
(defthm then-subseq-same-2
(implies
(and (stringp seq) (equal end (length seq)))
(equal (subseq seq 0 end) seq))
:hints (("Goal" :in-theory (enable subseq subseq-list)))))
(defthm when-append-same
(iff (equal x (append x y))
(equal y (if (consp x) (cdr (last x)) x))))
(defthm
set-difference$-becomes-intersection$
(equal (set-difference-equal l1 (set-difference-equal l1 l2))
(intersection-equal l1 l2))
:hints
(("goal"
:expand
(:with
set-difference$-redefinition
(set-difference-equal (cdr l1)
(cons (car l1)
(set-difference-equal (cdr l1) l2)))))))
(defthm subsetp-of-set-difference$-2
(equal (subsetp-equal z (set-difference-equal x y))
(and (subsetp-equal z x)
(not (intersectp-equal z y))))
:hints (("goal" :in-theory (e/d () (intersectp-is-commutative))
:induct (mv (intersectp-equal z y) (subsetp-equal z x)))))
(defthm intersectp-when-subsetp
(implies (subsetp-equal x y)
(equal (intersectp-equal x y)
(consp x))))
(defthm nth-under-iff-1
(implies (not (member-equal nil l))
(iff (nth n l) (< (nfix n) (len l)))))
(defthm consp-when-member
(implies (member-equal x lst)
(consp lst))
:rule-classes :forward-chaining)
(encapsulate ()
(local (in-theory (disable min)))
(defthm painful-debugging-lemma-11 (iff (< (min x y) y) (< x y))
:hints (("Goal" :in-theory (enable min))))
(defthm painful-debugging-lemma-22
(implies (equal (+ w y) z)
(iff (equal (+ w (min x y)) z)
(<= y x)))
:hints (("Goal" :in-theory (enable min))))
(defthm painful-debugging-lemma-17
(zp (+ (- x) (min x y)))
:rule-classes :type-prescription
:hints (("Goal" :in-theory (enable min)))))
(defthmd
painful-debugging-lemma-8
(implies (not (zp cluster-size))
(and
(equal (ceiling cluster-size cluster-size) 1)
(equal (ceiling 0 cluster-size) 0))))
(defthm painful-debugging-lemma-9
(implies (and (not (zp j)) (integerp i) (>= i 0))
(>= (ceiling i j) 0))
:rule-classes (:linear :type-prescription))
(defthm painful-debugging-lemma-10
(implies (and (not (zp j)) (integerp i) (> i 0))
(> (ceiling i j) 0))
:rule-classes (:linear :type-prescription))
(defthm member-of-nth-when-not-intersectp
(implies (and (not (intersectp-equal l x))
(< (nfix n) (len l)))
(not (member-equal (nth n l) x))))
(defthm true-list-listp-of-remove
(implies (true-list-listp l)
(true-list-listp (remove-equal x l))))
(defthm subsetp-of-set-difference$-when-subsetp
(implies (subsetp-equal x y)
(subsetp-equal (set-difference-equal x z)
(set-difference-equal y z)))
:hints (("goal" :induct (mv (set-difference-equal x z)
(subsetp-equal x y))
:in-theory (e/d nil (intersectp-is-commutative)))))
(defthm
true-list-listp-of-set-difference
(implies (true-list-listp l1)
(true-list-listp (set-difference-equal l1 l2)))
:hints (("goal" :in-theory (enable set-difference-equal true-list-listp))))
(defthm last-of-append
(equal (last (append x y))
(cond ((consp y) (last y))
((consp x) (cons (car (last x)) y))
(t y))))
;; This only addresses the linear part, because the integerp part is covered by
;; integerp-of-nth-when-integer-listp.
(defthm natp-of-nth-when-nat-listp
(implies (nat-listp l) (<= 0 (nth n l)))
:hints (("goal" :in-theory (enable nth nat-listp)))
:rule-classes :linear)
(defthm acl2-number-listp-when-rational-listp
(implies (rational-listp l)
(acl2-number-listp l)))
(defthm rational-listp-when-integer-listp
(implies (integer-listp l)
(rational-listp l)))
(defthm integer-listp-when-nat-listp
(implies (nat-listp l)
(integer-listp l)))
(defthm consp-of-strip-cars (equal (consp (strip-cars x)) (consp x)))
|