File: member-intersectp.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (254 lines) | stat: -rw-r--r-- 9,280 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
(in-package "ACL2")

;  member-intersectp.lisp                              Mihir Mehta

(include-book "not-intersectp-list")

(defund disjoint-list-listp (x)
  (if (atom x)
      (equal x nil)
    (and (not-intersectp-list (car x) (cdr x))
         (disjoint-list-listp (cdr x)))))

(defun no-duplicates-listp (x)
  (if (atom x)
      (equal x nil)
    (and (no-duplicatesp (car x)) (no-duplicates-listp (cdr x)))))

(defthm flatten-disjoint-lists
  (implies (true-listp l)
           (equal (no-duplicatesp-equal (flatten l))
                  (and (disjoint-list-listp l) (no-duplicates-listp l))))
  :hints (("Goal" :in-theory (enable disjoint-list-listp))))

(defthm not-intersectp-list-of-append-2
  (equal (not-intersectp-list (binary-append x y) l)
         (and (not-intersectp-list x l)
              (not-intersectp-list y l)))
  :hints (("Goal" :in-theory (enable not-intersectp-list))))

(defthm no-duplicates-listp-of-append
  (equal (no-duplicates-listp (binary-append x y))
         (and (no-duplicates-listp (true-list-fix x))
              (no-duplicates-listp y))))

(defthm
  not-intersectp-list-of-cons-1
  (implies (case-split (consp y))
           (equal (not-intersectp-list (cons x y) l)
                  (and (not-intersectp-list (list x) l)
                       (not-intersectp-list y l))))
  :hints
  (("goal" :do-not-induct t
    :in-theory (disable not-intersectp-list-of-append-2)
    :use (:instance not-intersectp-list-of-append-2
                    (x (list x))))))

(defun member-intersectp-equal (x y)
  (declare (xargs :guard (and (true-list-listp x) (true-list-listp y))))
  (and (consp x)
       (or (not (not-intersectp-list (car x) y))
           (member-intersectp-equal (cdr x) y))))

(defcong list-equiv
  equal (member-intersectp-equal x y)
  1
  :hints (("goal" :in-theory (enable fast-list-equiv)
           :induct (fast-list-equiv x x-equiv))))

(defthm when-append-is-disjoint-list-listp
  (equal (disjoint-list-listp (binary-append x y))
         (and (disjoint-list-listp (true-list-fix x))
              (disjoint-list-listp y)
              (not (member-intersectp-equal x y))))
  :hints (("Goal" :in-theory (enable disjoint-list-listp))))

(defthm member-intersectp-with-subset
  (implies (and (member-intersectp-equal z x)
                (subsetp-equal x y))
           (member-intersectp-equal z y)))

(defthm
  intersectp-member-when-not-member-intersectp
  (implies (and (member-equal x lst2)
                (not (member-intersectp-equal lst1 lst2)))
           (not-intersectp-list x lst1))
  :hints (("Goal" :in-theory (enable not-intersectp-list))))

(local
 (defthm member-intersectp-binary-append-lemma
   (equal (member-intersectp-equal e (binary-append x y))
          (or (member-intersectp-equal e x)
              (member-intersectp-equal e y)))))

(local
 (defthm member-intersectp-is-commutative-lemma-1
   (implies (not (consp x))
            (not (member-intersectp-equal y x)))
   :hints (("Goal" :in-theory (enable not-intersectp-list)))))

(defthm member-intersectp-is-commutative-lemma-2
  (implies (and (consp x)
                (not (not-intersectp-list (car x) y)))
           (member-intersectp-equal y x))
  :hints (("Goal" :in-theory (enable not-intersectp-list))))

(defthmd member-intersectp-is-commutative-lemma-3
  (implies (and (consp x)
                (not-intersectp-list (car x) y))
           (equal (member-intersectp-equal y (cdr x))
                  (member-intersectp-equal y x)))
  :hints (("Goal" :in-theory (enable not-intersectp-list))))

(defthm member-intersectp-is-commutative
  (equal (member-intersectp-equal x y)
         (member-intersectp-equal y x))
  :hints (("Goal" :in-theory (enable member-intersectp-is-commutative-lemma-3)) ))

;; This is useful, but might be useful at some point...
(defthm
  another-lemma-about-member-intersectp
  (implies (or (member-intersectp-equal x z)
               (member-intersectp-equal y z))
           (member-intersectp-equal z (binary-append x y))))

(defthm member-intersectp-binary-append
  (equal (member-intersectp-equal e (binary-append x y))
         (or (member-intersectp-equal e x)
             (member-intersectp-equal e y)))
  :rule-classes
  (:rewrite
   (:rewrite
    :corollary
    (equal (member-intersectp-equal (binary-append x y) e)
           (or (member-intersectp-equal x e)
               (member-intersectp-equal y e))))))

(defthm not-intersectp-list-of-flatten
  (equal (not-intersectp-list (flatten x) y)
         (not (member-intersectp-equal x y))))

(defthm
  not-intersectp-list-of-set-difference$-lemma-1
  (implies (and (intersectp-equal x y)
                (member-equal y l))
           (not (not-intersectp-list x l)))
  :hints
  (("goal"
    :in-theory (enable member-equal not-intersectp-list))))

(defthm
  not-intersectp-list-of-set-difference$-lemma-2
  (implies (and (subsetp-equal l1 (cons nil l2))
                (not-intersectp-list x l2))
           (not-intersectp-list x l1))
  :hints (("goal" :in-theory (enable subsetp-equal not-intersectp-list)))
  :rule-classes
  (:rewrite
   (:rewrite
    :corollary
    (implies (and
              (not-intersectp-list x l2)
              (subsetp-equal l1 (cons nil l2)))
             (not-intersectp-list x l1)))))

(defthm not-intersectp-list-of-set-difference$-lemma-3
  (implies (and (not (member-intersectp-equal x y1))
                (subsetp-equal y2 (cons nil y1)))
           (not (member-intersectp-equal x y2)))
  :hints (("goal" :in-theory (enable member-intersectp-equal
                                     subsetp-equal))))

(defthm
  not-intersectp-list-of-set-difference$-lemma-4
  (implies (and (disjoint-list-listp x2)
                (member-equal x1 x2))
           (not-intersectp-list x1 (remove-equal x1 x2)))
  :hints
  (("goal" :in-theory
    (e/d (disjoint-list-listp subsetp-equal not-intersectp-list
                              set-difference$-redefinition)
         (member-intersectp-is-commutative set-difference-equal)))))

(defthm
  not-intersectp-list-of-set-difference$
  (implies (and (disjoint-list-listp y)
                (disjoint-list-listp x2)
                (member-equal x1 y)
                (subsetp-equal y x2))
           (not-intersectp-list x1 (set-difference-equal x2 y)))
  :hints
  (("goal"
    :in-theory
    (e/d (disjoint-list-listp subsetp-equal not-intersectp-list)
         (member-intersectp-is-commutative))
    :induct (mv (subsetp-equal y x2)
                (member-equal x1 y))
    :expand (:with set-difference$-redefinition
                   (set-difference-equal x2 y)))))

(defthm
  not-member-intersectp-of-set-difference$-1
  (implies (and (disjoint-list-listp x2)
                (subsetp-equal x1 y)
                (subsetp-equal y x2)
                (disjoint-list-listp y))
           (not (member-intersectp-equal x1 (set-difference-equal x2 y))))
  :hints
  (("goal"
    :in-theory (e/d (disjoint-list-listp subsetp-equal member-intersectp-equal
                                         set-difference-equal)
                    (member-intersectp-is-commutative))
    :expand
    ((:with member-intersectp-is-commutative
            (:free (x)
                   (member-intersectp-equal x nil)))
     (:with member-intersectp-is-commutative
            (:free (x1 x2 y)
                   (member-intersectp-equal x1 (cons x2 y))))
     (:with member-intersectp-is-commutative
            (:free (x y1 y2)
                   (member-intersectp-equal (set-difference-equal x y1)
                                            y2)))))))

(defthm
  member-intersectp-of-set-difference$-lemma-1
  (equal (member-intersectp-equal x1 (cons x2 y))
         (or (not (not-intersectp-list x2 x1))
             (member-intersectp-equal x1 y)))
  :hints (("goal" :do-not-induct t
           :in-theory (disable member-intersectp-is-commutative)
           :expand ((:with member-intersectp-is-commutative
                           (member-intersectp-equal x1 (cons x2 y)))
                    (:with member-intersectp-is-commutative
                           (member-intersectp-equal y x1))))))

(defthmd member-intersectp-of-set-difference$-lemma-2
  (implies (and (member-equal x y)
                (case-split (consp x)))
           (not (not-intersectp-list x y)))
  :hints (("goal" :in-theory (enable not-intersectp-list))))

(defthm member-intersectp-of-set-difference$-1
  (implies (not (member-intersectp-equal x y))
           (equal (member-intersectp-equal (set-difference-equal x y)
                                           z)
                  (member-intersectp-equal x z)))
  :hints
  (("Goal" :in-theory (enable member-intersectp-of-set-difference$-lemma-2)))
  :rule-classes
  (:rewrite
   (:rewrite
    :corollary
    (implies (not (member-intersectp-equal x y))
             (equal (member-intersectp-equal z (set-difference-equal x y))
                    (member-intersectp-equal z x))))))

(defthmd
  not-intersectp-list-of-cons-2
  (implies (and (member-equal i y)
                (not-intersectp-list y l))
           (not-intersectp-list (list i) l))
  :hints (("goal" :in-theory (disable not-intersectp-list-when-subsetp-1)
           :use (:instance not-intersectp-list-when-subsetp-1
                           (x (list i))))))