1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "ACL2")
(include-book "mksym")
;; The defthms-flag macro
;;
;; We now introduce a macro which helps prove theorems about mutually recursive
;; functions using a flag function. The general form is:
;;
;; (defthms-flag
;; :shared-hyp (and hyp1 ... hypK)
;; :thms ((flag1 name1 thm1) ... (flagN nameN thmN) (t nameElse thmElse))
;; :flag-var var
;; :hints (("Goal" ...)))
;;
;; Calling this will introduce an encapsulate event which essentially has
;; the following shape:
;;
;; (encapsulate
;; ()
;; (local (defthm lemma
;; (implies shared-hyp
;; (cond ((equal var 'flag1)
;; thm1)
;; ((equal var 'flag2)
;; thm2)
;; ...
;; ((equal var 'flagN)
;; thmN)
;; (t
;; thmElse)))
;; :rule-classes nil
;; :hints (("Goal" ...))))
;;
;; (defthm name1
;; (implies shared-hyp
;; thm1)
;; :hints(("Goal" :use ((:instance lemma (flag 'flag1))))))
;;
;; ...
;;
;; (defthm nameN
;; (implies shared-hyp
;; thmN)
;; :hints(("Goal" :use ((:instance lemma (flag 'flagN))))))
;;
;; (defthm nameElse
;; (implies shared-hyp
;; thmElse)
;; :hints(("Goal" :use ((:instance lemma (flag 'defthms-flag-otherwise)))))))
;;
;; By default, flag-var is set to "flag" and shared-hyp is set to t.
;;
;; The flags in the (flag name thm) triples need not be distinct; all such
;; triples with the same flags will be merged together in the cond.
(defun flag-triplep (x)
(declare (xargs :mode :program))
(and (or (and (true-listp x)
(equal (length x) 3))
(er hard 'flag-triplep "Expected ~x0 to be a (flag name thm) triple.~%" x))
(or (symbolp (first x))
(er hard 'flag-triplep "Expected the flag, ~x0, to be a symbol.~%" x))
(or (symbolp (second x))
(er hard 'flag-triplep "Expected the name, ~x0, to be a symbol.~%" x))
;; No checking of the theorem.
))
(defun flag-triple-listp (x)
(declare (xargs :mode :program))
(if (consp x)
(and (flag-triplep (car x))
(flag-triple-listp (cdr x)))
t))
;; We sort the flag-triple we're given into buckets by their flag. Each bucket
;; has the form (flag <flag-triple-list>)
(defun add-flag-triple-to-proper-bucket (flag-triple buckets)
(declare (xargs :mode :program))
(if (consp buckets)
(let* ((bucket1 (car buckets))
(bucket1-flag (first bucket1))
(bucket1-triples (second bucket1)))
(if (equal bucket1-flag (car flag-triple))
(let ((new-bucket1 (list bucket1-flag (cons flag-triple bucket1-triples))))
(cons new-bucket1 (cdr buckets)))
(cons bucket1 (add-flag-triple-to-proper-bucket flag-triple (cdr buckets)))))
(let* ((new-bucket-tag (car flag-triple))
(new-bucket-triples (list flag-triple))
(new-bucket (list new-bucket-tag new-bucket-triples)))
(list new-bucket))))
(defun assign-flag-triples-to-buckets (flag-triples buckets)
(declare (xargs :mode :program))
(if (consp flag-triples)
(assign-flag-triples-to-buckets (cdr flag-triples)
(add-flag-triple-to-proper-bucket (car flag-triples) buckets))
buckets))
;; We also hyps the hyps that are shared on a per-flag basis.
(defun eliminate-all-forcing (x)
(declare (xargs :mode :program))
(if (consp x)
(if (member-equal (car x) '(force MILAWA::force))
(eliminate-all-forcing (cadr x))
(cons (eliminate-all-forcing (car x))
(eliminate-all-forcing (cdr x))))
x))
(defun split-into-hyps-and-conclusions (thms)
(declare (xargs :mode :program))
;; Thms are a list we want to prove, which share a particular flag.
;; We recognize theorems of three forms:
;; 1. (implies (and hyp1 ... hypN) concl)
;; 2. (implies hyp concl)
;; 3. concl
;; We create a new list whose entries are pairs of the form (hyp-list . concl)
(if (consp thms)
(cons (let ((thm1 (car thms)))
(if (and (consp thm1)
(equal (first thm1) 'implies)
(equal (length thm1) 3))
(let ((antecedent (second thm1))
(consequent (third thm1)))
(if (and (consp antecedent)
(equal (first antecedent) 'and))
;; (implies (and hyp1 ... hypN) concl)
(cons (cdr antecedent) consequent)
;; (implies hyp1 concl)
(cons (list antecedent) consequent)))
;; concl
(cons nil thm1)))
(split-into-hyps-and-conclusions (cdr thms)))
nil))
;; We compute the intersection of these hyp-lists to identify the shared hyps.
(defun intersect (x y)
(declare (xargs :mode :program))
(if (consp x)
(if (member-equal (car x) y)
(cons (car x) (intersect (cdr x) y))
(intersect (cdr x) y))
nil))
(defun intersect-list (x)
(declare (xargs :mode :program))
(if (consp x)
(if (consp (cdr x))
(intersect (car x) (intersect-list (cdr x)))
(car x))
nil))
;; We then alter the (hyp-list . concl)-pairs list by removing all the shared
;; hyps from each hyp-list.
(defun aux-consolidate-theorems (thms shared-hyps)
;; thms is a list of (hyp-list . concl) pairs. We turn it into a list of
;; (implies remaining-hyps concl) where the remaining-hyps are the original
;; hyps, minus the shared hyps.
(declare (xargs :mode :program))
(if (consp thms)
(let* ((thm1 (car thms))
(thm1-hyps (car thm1))
(thm1-concl (cdr thm1))
(new-hyps (set-difference-equal thm1-hyps shared-hyps)))
(cons (cond ((and (consp new-hyps)
(consp (cdr new-hyps)))
`(if (and ,@new-hyps) ,thm1-concl t))
((consp new-hyps)
`(if ,(car new-hyps) ,thm1-concl t))
(t
thm1-concl))
(aux-consolidate-theorems (cdr thms) shared-hyps)))
nil))
(defun consolidate-theorems (thms)
(declare (xargs :mode :program))
;; Thms are the ACL2-style theorems for a single flag. We compute the shared
;; hyps and create the best theorem we can.
(if (atom (cdr thms))
;; Only one theorem. Don't bother consolidating anything.
(car thms)
;; More than one theorem. Try to consolidate.
(let* ((hyp/conc-list (split-into-hyps-and-conclusions thms))
(shared-hyps (intersect-list (strip-cars hyp/conc-list)))
(tweaked-thms (aux-consolidate-theorems hyp/conc-list shared-hyps)))
(cond ((and (consp shared-hyps)
(consp (cdr shared-hyps)))
`(implies (and ,@shared-hyps)
(and ,@tweaked-thms)))
((consp shared-hyps)
`(implies ,(car shared-hyps)
(and ,@tweaked-thms)))
(t
`(and ,@tweaked-thms))))))
(defun create-cond-pairs-from-buckets1 (flag-var buckets)
(declare (xargs :mode :program))
(if (consp buckets)
(let* ((bucket1 (car buckets))
(bucket1-flag (first bucket1))
(bucket1-triples (second bucket1))
(bucket1-thms (strip-caddrs bucket1-triples)))
(cons `(,(if (equal bucket1-flag t)
t
`(equal ,flag-var ',bucket1-flag))
,(consolidate-theorems (eliminate-all-forcing bucket1-thms)))
(create-cond-pairs-from-buckets1 flag-var (cdr buckets))))
nil))
(defun create-cond-pairs-from-buckets (flag-var buckets)
(declare (xargs :mode :program))
(let ((main-cond-pairs (create-cond-pairs-from-buckets1 flag-var buckets)))
(if (assoc t buckets)
;; Some bucket has t as its flag, so we don't need to bother with a
;; phony case.
main-cond-pairs
(append main-cond-pairs `((t t))))))
(defun create-named-theorem-from-triple (flag-triple shared-hyp flag-var atp lemma-name)
(declare (xargs :mode :program))
(let* ((flag (first flag-triple))
(name (second flag-triple))
(thm (third flag-triple))
(event (if atp 'MILAWA::defthm@ 'MILAWA::defthm))
(thm* (if (equal shared-hyp t)
thm
`(implies ,shared-hyp ,thm))))
`(,event ,name
,thm*
:hints(("Goal" :use ((:instance ,lemma-name (,flag-var ',(if (equal flag t)
'MILAWA::defthms-flag-otherwise
flag)))))))))
(defun create-named-theorems-from-triples (flag-triples shared-hyp flag-var atp lemma-name)
(declare (xargs :mode :program))
(if (consp flag-triples)
(cons (create-named-theorem-from-triple (car flag-triples) shared-hyp flag-var atp lemma-name)
(create-named-theorems-from-triples (cdr flag-triples) shared-hyp flag-var atp lemma-name))
nil))
(defun defthms-flag-fn (triples shared-hyp flag-var hints atp)
(declare (xargs :mode :program))
(and (flag-triple-listp triples)
(let* ((buckets (assign-flag-triples-to-buckets triples nil))
(event (if atp 'MILAWA::defthm@ 'MILAWA::defthm))
(lemma-name (mksym 'lemma-for- (second (car triples))))
(flag-thm (if (equal shared-hyp t)
`(cond ,@(create-cond-pairs-from-buckets flag-var buckets))
`(implies ,shared-hyp
(cond ,@(create-cond-pairs-from-buckets flag-var buckets))))))
`(encapsulate
()
(,event ,lemma-name
,flag-thm
:rule-classes nil
:hints ,hints)
,@(create-named-theorems-from-triples triples shared-hyp flag-var atp lemma-name)))))
(defmacro MILAWA::defthms-flag (&key (shared-hyp 't) thms (flag-var 'MILAWA::flag) @contextp hints)
(defthms-flag-fn thms shared-hyp flag-var hints @contextp))
|