1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "ACL2")
(program)
(set-state-ok t)
;; BOZO would like to switch to ACL2's versions, but they don't include :class.
;; Sent Matt an email. Hopefully this gets fixed in ACL2 3.4.
;; Info functions inspect the various rules and turn them into alists of the
;; form:
;;
;; (key . (value1 ... valueN))
;;
;; When we print these alists with our "info" function, we only print "key:
;; value1". This lets you store additional information in later values. For
;; example, value1 might want to untranslate the term for prettier printing to
;; the user, or decode the type-set, etc. Value2 can then include the original
;; term or undecoded type-set, so that programs can use that value instead.
(defun MILAWA::info-for-lemmas (lemmas numes ens wrld)
(if (null lemmas)
nil
(let* ((rule (car lemmas))
(nume (access rewrite-rule rule :nume))
(rune (access rewrite-rule rule :rune))
(subclass (access rewrite-rule rule :subclass))
(lhs (access rewrite-rule rule :lhs))
(rhs (access rewrite-rule rule :rhs))
(hyps (access rewrite-rule rule :hyps))
(equiv (access rewrite-rule rule :equiv))
(backchain-limit-lst (access rewrite-rule rule :backchain-limit-lst))
(heuristic-info (access rewrite-rule rule :heuristic-info))
)
(if (or (eq numes t)
(member nume numes))
(cons `((:rune ,rune)
(:nume ,nume)
(:class :rewrite)
(:enabledp ,(if (enabled-runep rune ens wrld) t nil))
,@(if (eq subclass 'meta)
`((:meta-fn ,lhs)
(:hyp-fn ,(or hyps :none) ,hyps))
`((:lhs ,(untranslate lhs nil wrld) ,lhs)
(:rhs ,(untranslate rhs nil wrld) ,rhs)
(:hyps ,(untranslate-hyps hyps wrld) ,hyps)))
(:equiv ,equiv)
(:backchain-limit-lst ,backchain-limit-lst)
(:subclass ,subclass)
,@(cond ((eq subclass 'backchain)
`((:loop-stopper ,heuristic-info)))
((eq subclass 'definition)
`((:clique ,(car heuristic-info))
(:controller-alist ,(cdr heuristic-info))))
(t
nil)))
(MILAWA::info-for-lemmas (cdr lemmas) numes ens wrld))
(MILAWA::info-for-lemmas (cdr lemmas) numes ens wrld)))))
(defun MILAWA::info-for-well-founded-relation-rules (rules)
; There is no record class corresponding to well-founded-relation rules. But
; the well-founded-relation-alist contains triples of the form (rel mp . rune)
; and we assume rules is a list of such triples.
(if (null rules)
nil
(let* ((rule (car rules))
(rune (cddr rule)))
(cons (list (list :rune rune)
(list :class :well-founded-relation)
(list :domain-predicate (cadr rule))
(list :well-founded-relation (car rule)))
(MILAWA::info-for-well-founded-relation-rules (cdr rules))))))
(defun MILAWA::info-for-built-in-clause-rules1 (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access built-in-clause rule :nume))
(rune (access built-in-clause rule :rune))
(clause (access built-in-clause rule :clause)))
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :built-in-clauses)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :clause (prettyify-clause clause nil wrld) clause))
(MILAWA::info-for-built-in-clause-rules1 (cdr rules) numes ens wrld))
(MILAWA::info-for-built-in-clause-rules1 (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-built-in-clause-rules (alist numes ens wrld)
(if (null alist)
nil
(append (MILAWA::info-for-built-in-clause-rules1 (cdar alist) numes ens wrld)
(MILAWA::info-for-built-in-clause-rules (cdr alist) numes ens wrld))))
(defun MILAWA::info-for-compound-recognizer-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access recognizer-tuple rule :nume))
(rune (access recognizer-tuple rule :rune))
(true-ts (access recognizer-tuple rule :true-ts))
(false-ts (access recognizer-tuple rule :false-ts))
(strongp (access recognizer-tuple rule :strongp)))
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :compound-recognizer)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :fn (access recognizer-tuple rule :fn))
(list :true-ts (decode-type-set true-ts) true-ts)
(list :false-ts (decode-type-set false-ts) false-ts)
(list :strongp strongp))
(MILAWA::info-for-compound-recognizer-rules (cdr rules) numes ens wrld))
(MILAWA::info-for-compound-recognizer-rules (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-generalize-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access generalize-rule rule :nume))
(rune (access generalize-rule rule :rune))
(formula (access generalize-rule rule :formula)))
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :generalize)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :formula (untranslate formula t wrld) formula))
(MILAWA::info-for-generalize-rules (cdr rules) numes ens wrld))
(MILAWA::info-for-generalize-rules (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-linear-lemmas (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(nume (access linear-lemma rule :nume))
(rune (access linear-lemma rule :rune))
(hyps (access linear-lemma rule :hyps))
(concl (access linear-lemma rule :concl))
(max-term (access linear-lemma rule :max-term))
(backchain-limit-lst (access linear-lemma rule :backchain-limit-lst)))
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :linear)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :hyps (untranslate-hyps hyps wrld) hyps)
(list :concl (untranslate concl nil wrld) concl)
(list :max-term (untranslate max-term nil wrld) max-term)
(list :backchain-limit-lst backchain-limit-lst))
(MILAWA::info-for-linear-lemmas (cdr rules) numes ens wrld))
(MILAWA::info-for-linear-lemmas (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-eliminate-destructors-rule (rule numes ens wrld)
(let ((rune (access elim-rule rule :rune))
(nume (access elim-rule rule :nume))
(hyps (access elim-rule rule :hyps))
(lhs (access elim-rule rule :lhs))
(rhs (access elim-rule rule :rhs))
(destructor-term (access elim-rule rule :destructor-term))
(destructor-terms (access elim-rule rule :destructor-terms))
(crucial-position (access elim-rule rule :crucial-position)))
(if (member nume numes)
(list (list :rune rune)
(list :nume nume)
(list :class :elim)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :hyps (untranslate-hyps hyps wrld) hyps)
(list :lhs (untranslate lhs nil wrld) lhs)
(list :rhs (untranslate rhs nil wrld) rhs)
(list :destructor-term (untranslate destructor-term nil wrld) destructor-term)
(list :destructor-terms (untranslate-lst destructor-terms nil wrld) destructor-terms)
(list :crucial-position crucial-position))
nil)))
;; (defun info-for-congruences (val numes ens wrld)
;; ; val is of the form (equiv geneqv1 ... geneqvk ... geneqvn).
;; ; This seems complicated so we'll punt for now.
;; (declare (ignore val numes ens wrld))
;; nil)
;; (defun info-for-coarsenings (val numes ens wrld)
;; ; It is not obvious how to determine which coarsenings are really new, so we
;; ; print nothing.
;; (declare (ignore val numes ens wrld))
;; nil)
(defun MILAWA::info-for-forward-chaining-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access forward-chaining-rule rule :rune))
(nume (access forward-chaining-rule rule :nume))
(trigger (access forward-chaining-rule rule :trigger))
(hyps (access forward-chaining-rule rule :hyps))
(concls (access forward-chaining-rule rule :concls)))
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :forward-chaining)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :trigger (untranslate trigger nil wrld) trigger)
(list :hyps (untranslate-hyps hyps wrld) hyps)
(list :concls (untranslate-hyps concls wrld) concls))
(MILAWA::info-for-forward-chaining-rules (cdr rules) numes ens wrld))
(MILAWA::info-for-forward-chaining-rules (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-type-prescriptions (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access type-prescription rule :rune))
(nume (access type-prescription rule :nume))
(term (access type-prescription rule :term))
(hyps (access type-prescription rule :hyps))
(basic-ts (access type-prescription rule :basic-ts))
(vars (access type-prescription rule :vars))
(corollary (access type-prescription rule :corollary)))
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :type-prescription)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :term (untranslate term nil wrld) term)
(list :hyps (untranslate-hyps hyps wrld) hyps)
(list :basic-ts (decode-type-set basic-ts) basic-ts)
(list :vars vars)
(list :corollary (untranslate corollary t wrld) corollary))
(MILAWA::info-for-type-prescriptions (cdr rules) numes ens wrld))
(MILAWA::info-for-type-prescriptions (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-induction-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access induction-rule rule :rune))
(nume (access induction-rule rule :nume))
(pattern (access induction-rule rule :pattern))
(condition (access induction-rule rule :condition))
(scheme (access induction-rule rule :scheme)))
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :induction)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :pattern (untranslate pattern nil wrld) pattern)
(list :condition (untranslate condition t wrld) condition)
(list :scheme (untranslate scheme nil wrld) scheme))
(MILAWA::info-for-induction-rules (cdr rules) numes ens wrld))
(MILAWA::info-for-induction-rules (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-type-set-inverter-rules (rules numes ens wrld)
(if (null rules)
nil
(let* ((rule (car rules))
(rune (access type-set-inverter-rule rule :rune))
(nume (access type-set-inverter-rule rule :nume))
(type-set (access type-set-inverter-rule rule :ts))
(terms (access type-set-inverter-rule rule :terms))
)
(if (member nume numes)
(cons (list (list :rune rune)
(list :nume nume)
(list :class :type-set-inverter)
(list :enabledp (if (enabled-runep rune ens wrld) t nil))
(list :type-set type-set)
(list :condition (untranslate-hyps terms wrld) terms))
(MILAWA::info-for-type-set-inverter-rules (cdr rules) numes ens wrld))
(MILAWA::info-for-type-set-inverter-rules (cdr rules) numes ens wrld)))))
(defun MILAWA::info-for-x-rules (sym key val numes ens wrld)
; See add-x-rule for an enumeration of rule classes that generate the
; properties shown below. Keep this function in sync with find-rules-of-rune2.
(cond
((eq key 'global-value)
(case sym
(well-founded-relation-alist
; Avoid printing the built-in anonymous rule if that is all we have here.
(if (consp (cdr val))
(MILAWA::info-for-well-founded-relation-rules val)
nil))
(built-in-clauses (MILAWA::info-for-built-in-clause-rules val numes ens wrld))
(type-set-inverter-rules (MILAWA::info-for-type-set-inverter-rules val numes ens wrld))
(recognizer-alist (MILAWA::info-for-compound-recognizer-rules val numes ens wrld))
(generalize-rules (MILAWA::info-for-generalize-rules val numes ens wrld))
(otherwise nil)))
(t
(case key
(lemmas (MILAWA::info-for-lemmas val numes ens wrld))
(linear-lemmas (MILAWA::info-for-linear-lemmas val numes ens wrld))
(eliminate-destructors-rule (MILAWA::info-for-eliminate-destructors-rule val numes ens wrld))
(congruences (info-for-congruences val numes ens wrld))
(coarsenings (info-for-coarsenings val numes ens wrld))
(forward-chaining-rules (MILAWA::info-for-forward-chaining-rules val numes ens wrld))
(type-prescriptions (MILAWA::info-for-type-prescriptions val numes ens wrld))
(induction-rules (MILAWA::info-for-induction-rules val numes ens wrld))
(otherwise nil)))))
(defun MILAWA::info-for-rules1 (props numes ens wrld)
(cond ((null props)
nil)
((eq (cadar props) *acl2-property-unbound*)
(MILAWA::info-for-rules1 (cdr props) numes ens wrld))
(t
(append (MILAWA::info-for-x-rules (caar props) (cadar props) (cddar props) numes ens wrld)
(MILAWA::info-for-rules1 (cdr props) numes ens wrld)))))
(defun MILAWA::info-for-rule-classes-nil (name wrld)
; There is no record class corresponding to :rule-classes nil rules. But we can at
; least look up the theorem that corresponds to this rule.
(let ((thm (getprop name 'theorem nil 'current-acl2-world wrld))
(untranslated-thm (getprop name 'untranslated-theorem nil 'current-acl2-world wrld)))
(if thm
(list (list :name name)
(list :class nil)
(list :theorem untranslated-thm thm))
nil)))
(defun info-fn (name state)
(let ((wrld (w state)))
(cond ((and (symbolp name)
(not (keywordp name)))
(let* ((name (deref-macro-name name (macro-aliases wrld)))
(props (actual-props (world-to-next-event (cdr (decode-logical-name name wrld))) nil nil))
(numes (strip-cars (getprop name 'runic-mapping-pairs nil 'current-acl2-world wrld))))
(if (consp numes)
;; There are proper numes for this name
(MILAWA::info-for-rules1 props numes (ens state) wrld)
;; No proper numes. Maybe it's a rule-classes nil?
(list (MILAWA::info-for-rule-classes-nil name wrld)))))
(t
(er hard 'pr
"The argument to info-fn must be a non-keyword symbol.")))))
(defun max-length-of-any-key (symbols max)
(if (consp symbols)
(max-length-of-any-key (cdr symbols)
(max (length (symbol-name (car symbols))) max))
max))
(defun downcase-all-but-first (str)
(let* ((chars (coerce str 'list))
(first (car chars))
(rest (string-downcase1 (cdr chars))))
(coerce (cons first rest) 'string)))
(defun expand-keys-into-strings (symbols max-len)
(if (consp symbols)
(let* ((name (symbol-name (car symbols)))
(len (length name)))
(cons (string-append (downcase-all-but-first name)
(cons #\: (make-list (- max-len len) :initial-element #\Space)))
(expand-keys-into-strings (cdr symbols) max-len)))
nil))
(defun print-info-entry1 (keys vals state)
(if (not (consp keys))
state
(mv-let (col state)
(fmt1 "~s0 ~q1"
(list (cons #\0 (car keys))
(cons #\1 (caar vals)))
0
*standard-co*
state
nil)
(declare (ignore col))
(print-info-entry1 (cdr keys) (cdr vals) state))))
(defun print-info-entry (entry state)
(let* ((keys (strip-cars entry))
(vals (strip-cdrs entry))
(key-column-length (+ 2 (max-length-of-any-key keys 0)))
(new-keys (expand-keys-into-strings keys key-column-length)))
(pprogn
(print-info-entry1 new-keys vals state)
(fms "" 0 *standard-co* state nil)
)))
(defun print-info (info state)
(if (not (consp info))
state
(pprogn (print-info-entry (car info) state)
(print-info (cdr info) state))))
(defmacro info (name)
`(let ((state (print-info (info-fn ,name state) state)))
(mv nil :invisible state)))
#|
(logic)
(defun sample-nonrec-defun (x)
(+ x 1))
(defun sample-rec-defun (x)
(if (consp x)
(+ (nfix (car x))
(sample-rec-defun (cdr x)))
0))
(defthm sample-rewrite-rule
(equal (natp (sample-rec-defun x))
t))
(defthm sample-type-prescription-rule
(equal (natp (sample-rec-defun x))
t)
:rule-classes :type-prescription)
(defun sample-equiv (x y)
(equal x y))
(defequiv sample-equiv)
(defcong sample-equiv equal (sample-rec-defun x) 1)
(defthm sample-fc-rule
(implies (natp x)
(equal (natp (sample-rec-defun x))
t))
:rule-classes :forward-chaining)
(defthm sample-linear-rule
(<= 0 (sample-rec-defun x))
:rule-classes :linear)
(pr 'sample-nonrec-defun)
(info 'sample-nonrec-defun)
(pr 'sample-rewrite-rule)
(info 'sample-rewrite-rule)
(pr 'sample-type-prescription-rule)
(info 'sample-type-prescription-rule)
(pr 'sample-equiv)
(info 'sample-equiv)
(pr 'sample-equiv-implies-equal-sample-rec-defun-1)
(info 'sample-equiv-implies-equal-sample-rec-defun-1)
(pr 'sample-equiv-is-an-equivalence)
(info 'sample-equiv-is-an-equivalence)
(pr 'sample-fc-rule)
(info 'sample-fc-rule)
(pr 'sample-linear-rule)
(info 'sample-linear-rule)
(defaxiom crock
(equal (car x) (car x))
:rule-classes nil)
(pr 'crock)
(info 'crock)
|#
|