1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(%interactive)
(%rwn 1000)
(%urwn 1000)
(local (%max-proof-size 0))
(%autoadmit four-nats-measure)
(%autoprove ordp-of-four-nats-measure
(%enable default four-nats-measure)
(%restrict default ordp
(memberp x '((CONS (CONS '3 (+ '1 A))
(CONS (CONS '2 (+ '1 B))
(CONS (CONS '1 (+ '1 C)) (NFIX D))))
(CONS (CONS '2 (+ '1 B))
(CONS (CONS '1 (+ '1 C)) (NFIX D)))
(CONS (CONS '1 (+ '1 C)) (NFIX D))))))
(%autoprove ord<-of-four-nats-measure
(%enable default four-nats-measure)
(%restrict default ord<
(memberp x '((CONS (CONS '3 (+ '1 A1))
(CONS (CONS '2 (+ '1 B1))
(CONS (CONS '1 (+ '1 C1)) (NFIX D1))))
(CONS (CONS '2 (+ '1 B1))
(CONS (CONS '1 (+ '1 C1)) (NFIX D1)))
(CONS (CONS '1 (+ '1 C1)) (NFIX D1))))))
(defsection rw.cresult
(%autoadmit rw.cresult)
(%autoadmit rw.cresult->data)
(%autoadmit rw.cresult->cache)
(%autoadmit rw.cresult->alimitedp)
(local (%enable default
rw.cresult
rw.cresult->data
rw.cresult->cache
rw.cresult->alimitedp))
(%autoprove rw.cresult-under-iff)
(%autoprove rw.cresult->data-of-rw.cresult)
(%autoprove rw.cresult->cache-of-rw.cresult)
(%autoprove rw.cresult->alimitedp-of-rw.cresult))
(defsection rw.hypresult
(%autoadmit rw.hypresult)
(%autoadmit rw.hypresult->successp)
(%autoadmit rw.hypresult->traces)
(%autoadmit rw.hypresult->cache)
(%autoadmit rw.hypresult->alimitedp)
(local (%enable default
rw.hypresult
rw.hypresult->successp
rw.hypresult->traces
rw.hypresult->cache
rw.hypresult->alimitedp))
(%autoprove rw.hypresult-under-iff)
(%autoprove rw.hypresult->successp-of-rw.hypresult)
(%autoprove rw.hypresult->traces-of-rw.hypresult)
(%autoprove rw.hypresult->cache-of-rw.hypresult)
(%autoprove rw.hypresult->alimitedp-of-rw.hypresult))
(%autoadmit rw.flag-crewrite)
(defsection elimination-of-irrelevant-arguments
(local (%forcingp nil))
(local (%betamode nil))
(%autoprove rw.flag-crewrite-of-term-reduction
(%restrict default rw.flag-crewrite (and (equal flag ''term) (equal x 'x))))
(%autoprove rw.flag-crewrite-of-list-reduction
(%restrict default rw.flag-crewrite (and (equal flag ''list) (equal x 'x))))
(%autoprove rw.flag-crewrite-of-rule-reduction
(%restrict default rw.flag-crewrite (and (equal flag ''rule) (equal x 'x))))
(%autoprove rw.flag-crewrite-of-rules-reduction
(%restrict default rw.flag-crewrite (and (equal flag ''rules) (equal x 'x))))
(%autoprove rw.flag-crewrite-of-hyp-reduction
(%restrict default rw.flag-crewrite (and (equal flag ''hyp) (equal x 'x))))
(%autoprove rw.flag-crewrite-of-hyps-reduction
(%restrict default rw.flag-crewrite (and (equal flag ''hyps) (equal x 'x)))))
(defsection flag-function-wrappers
(%autoadmit rw.crewrite-core)
(%autoadmit rw.crewrite-core-list)
(%autoadmit rw.crewrite-try-rule)
(%autoadmit rw.crewrite-try-rules)
(%autoadmit rw.crewrite-try-match)
(%autoadmit rw.crewrite-try-matches)
(%autoadmit rw.crewrite-relieve-hyp)
(%autoadmit rw.crewrite-relieve-hyps)
(local (%forcingp nil))
(local (%enable default
rw.crewrite-core
rw.crewrite-core-list
rw.crewrite-try-rule
rw.crewrite-try-rules
rw.crewrite-try-match
rw.crewrite-try-matches
rw.crewrite-relieve-hyp
rw.crewrite-relieve-hyps))
(%autoprove rw.flag-crewrite-of-term
(%use (%thm rw.flag-crewrite-of-term-reduction)))
(%autoprove rw.flag-crewrite-of-list
(%use (%thm rw.flag-crewrite-of-list-reduction)))
(%autoprove rw.flag-crewrite-of-rule
(%use (%thm rw.flag-crewrite-of-rule-reduction)))
(%autoprove rw.flag-crewrite-of-rules
(%use (%thm rw.flag-crewrite-of-rules-reduction)))
(%autoprove rw.flag-crewrite-of-match)
(%autoprove rw.flag-crewrite-of-matches)
(%autoprove rw.flag-crewrite-of-hyp
(%use (%thm rw.flag-crewrite-of-hyp-reduction)))
(%autoprove rw.flag-crewrite-of-hyps
(%use (%thm rw.flag-crewrite-of-hyps-reduction))))
(%autoprove equal-with-quoted-list-of-nil)
(defsection proper-definitions-for-flag-wrappers
(local (%forcingp nil))
(local (%rwn 2000))
(local (%disable default
formula-decomposition
expensive-term/formula-inference
expensive-arithmetic-rules
expensive-arithmetic-rules-two
type-set-like-rules
unusual-consp-rules
unusual-memberp-rules
unusual-subsetp-rules
same-length-prefixes-equal-cheap
;; ---
lookup-when-not-consp
rw.trace-list-rhses-when-not-consp
forcing-logic.function-of-logic.function-name-and-logic.function-args-free))
(%autoprove definition-of-rw.crewrite-core
(%use (%instance (%thm rw.flag-crewrite) (flag 'term)))
(%betamode nil)
(%auto)
(%betamode once))
(%autoprove definition-of-rw.crewrite-core-list
(%use (%instance (%thm rw.flag-crewrite) (flag 'list)))
(%betamode nil)
(%auto)
(%betamode once))
(%autoprove definition-of-rw.crewrite-try-rule
(%use (%instance (%thm rw.flag-crewrite) (flag 'rule)))
(%betamode nil)
(%auto)
(%betamode once))
(%autoprove definition-of-rw.crewrite-try-rules
(%use (%instance (%thm rw.flag-crewrite) (flag 'rules)))
(%betamode nil)
(%auto)
(%betamode once))
(%autoprove definition-of-rw.crewrite-try-match
(%use (%instance (%thm rw.flag-crewrite) (flag 'match)))
(%betamode nil)
(%auto)
(%betamode once))
(%autoprove definition-of-rw.crewrite-try-matches
(%use (%instance (%thm rw.flag-crewrite) (flag 'matches)))
(%betamode nil)
(%auto)
(%betamode once))
(%autoprove definition-of-rw.crewrite-relieve-hyp
(%use (%instance (%thm rw.flag-crewrite) (flag 'hyp)))
(%betamode nil)
(%auto)
(%betamode once))
(%autoprove definition-of-rw.crewrite-relieve-hyps
(%use (%instance (%thm rw.flag-crewrite) (flag 'hyps)))
(%betamode nil)
(%auto)
(%betamode once)))
(%autoprove rw.crewrite-core-list-when-not-consp
(%restrict default definition-of-rw.crewrite-core-list (equal x 'x)))
(%autoprove rw.crewrite-core-list-of-cons
(%restrict default definition-of-rw.crewrite-core-list (equal x '(cons a x))))
(%autoprove true-listp-of-rw.cresult->data-of-rw.crewrite-core-list
(%induct (rank x)
((not (consp x))
nil)
((consp x)
(((x (cdr x))
(cache (rw.cresult->cache
(rw.crewrite-core assms (car x) cache iffp blimit rlimit anstack control))))))))
(%autoprove len-of-rw.cresult->data-of-rw.crewrite-core-list$
(%induct (rank x)
((not (consp x))
nil)
((consp x)
(((x (cdr x))
(cache (rw.cresult->cache
(rw.crewrite-core assms (car x) cache iffp blimit rlimit anstack control))))))))
(%autoprove rw.crewrite-try-rules-when-not-consp
(%restrict default definition-of-rw.crewrite-try-rules (equal rule[s] 'rule[s])))
(%autoprove rw.crewrite-try-rules-of-cons
(%restrict default definition-of-rw.crewrite-try-rules (equal rule[s] '(cons rule rules))))
(%autoprove rw.crewrite-try-matches-when-not-consp
(%restrict default definition-of-rw.crewrite-try-matches (equal sigma[s] 'sigma[s])))
(%autoprove rw.crewrite-try-matches-of-cons
(%restrict default definition-of-rw.crewrite-try-matches (equal sigma[s] '(cons sigma sigmas))))
(%autoprove rw.crewrite-relieve-hyps-when-not-consp
(%restrict default definition-of-rw.crewrite-relieve-hyps (equal x 'x)))
(%autoprove rw.crewrite-relieve-hyps-of-cons
(%restrict default definition-of-rw.crewrite-relieve-hyps (equal x '(cons a x))))
(%autoprove booleanp-of-rw.hypresult->successp-of-rw.crewrite-relieve-hyps
(%use (%thm definition-of-rw.crewrite-relieve-hyps)))
(%autoprove zp-of-one-plus)
|