1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "clause-basics")
(include-book "rulep")
(%interactive)
(defthm LOGIC.PEQUAL-LIST-OF-CONS-AND-CONS-gross-right
(implies (syntaxp (logic.constantp y))
(equal (logic.pequal-list (cons a x) y)
(if (consp y)
(CONS (LOGIC.PEQUAL a (CAR Y))
(LOGIC.PEQUAL-LIST x (CDR Y)))
nil)))
:hints(("Goal" :expand (logic.pequal-list (cons a x) y))))
(%autoprove LOGIC.PEQUAL-LIST-OF-CONS-AND-CONS-gross-right)
;(local (%disable default LOGIC.FUNCTION-OF-CONS-WITH-DEFECTIVELY-MERGED-CONSTANT))
(%deftheorem rw.crewrite-rule-lemma)
(encapsulate
()
(local (%enable default bust-up-cdr-of-logic.function-args-expensive))
(%defderiv rw.crewrite-rule-lemma-bldr)
(%defderiv rw.disjoined-crewrite-rule-lemma-bldr))
(defsection rw.crewrite-rule-lemma-list-bldr
(%autoadmit rw.crewrite-rule-lemma-list-bldr)
(%autoprove forcing-logic.appeal-listp-of-rw.crewrite-rule-lemma-list-bldr
(%cdr-induction x)
(%restrict default rw.crewrite-rule-lemma-list-bldr (equal x 'x)))
(%autoprove forcing-logic.strip-conclusions-of-rw.crewrite-rule-lemma-list-bldr
(%cdr-induction x)
(%restrict default rw.crewrite-rule-lemma-list-bldr (equal x 'x))
(%enable default logic.negate-term)
(%disable default
formula-decomposition
expensive-term/formula-inference))
(%autoprove forcing-logic.proof-listp-of-rw.crewrite-rule-lemma-list-bldr
(%cdr-induction x)
(%restrict default rw.crewrite-rule-lemma-list-bldr (equal x 'x))))
(defsection rw.disjoined-crewrite-rule-lemma-list-bldr
(%autoadmit rw.disjoined-crewrite-rule-lemma-list-bldr)
(%autoprove forcing-logic.appeal-listp-of-rw.disjoined-crewrite-rule-lemma-list-bldr
(%cdr-induction x)
(%restrict default rw.disjoined-crewrite-rule-lemma-list-bldr (equal x 'x)))
(%autoprove forcing-logic.strip-conclusions-of-rw.disjoined-crewrite-rule-lemma-list-bldr
(%cdr-induction x)
(%restrict default rw.disjoined-crewrite-rule-lemma-list-bldr (equal x 'x))
(%enable default logic.negate-term))
(%autoprove forcing-logic.proof-listp-of-rw.disjoined-crewrite-rule-lemma-list-bldr
(%cdr-induction x)
(%restrict default rw.disjoined-crewrite-rule-lemma-list-bldr (equal x 'x))))
(defsection rw.compile-crewrite-rule-trace-lemma1
(defthmd lemma-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1
;; BOZO unlocalize in ACL2 model
(implies (and (logic.all-negationsp a)
(logic.all-negationsp c)
(force (equal (len a) (len c))) ;; not always true, we force anyway
(force (equal (len b) (len d))) ;; not always true, we force anyway
(force (logic.formula-listp a))
(force (logic.formula-listp b))
(force (logic.formula-listp c))
(force (logic.formula-listp d)))
(equal (equal (logic.disjoin-formulas (app a b))
(logic.disjoin-formulas (app c d)))
(and (equal (list-fix a) (list-fix c))
(equal (list-fix b) (list-fix d))))))
(defthmd lemma2-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1
;; BOZO unlocalize in ACL2 model
(implies (equal (logic.substitute-list (rw.hyp-list-terms (rw.rule->hyps rule)) sigma)
(strip-firsts (logic.strip-function-args (logic.=lhses (logic.strip-conclusions proofs)))))
(equal (len proofs)
(len (rw.rule->hyps rule))))
:hints(("Goal"
:in-theory (disable len-of-strip-firsts len-of-logic.substitute-list)
:use ((:instance len-of-strip-firsts
(x (logic.strip-function-args (logic.=lhses (logic.strip-conclusions proofs)))))
(:instance len-of-logic.substitute-list
(x (rw.hyp-list-terms (rw.rule->hyps rule))))))))
(%autoadmit rw.compile-crewrite-rule-trace-lemma1)
(local (%enable default
rw.compile-crewrite-rule-trace-lemma1
rw.rule-clause
redefinition-of-logic.term-list-formulas))
(%autoprove lemma-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1)
(%autoprove lemma2-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1
(%disable default
len-of-strip-firsts
len-of-logic.substitute-list
[outside]len-of-strip-firsts
[outside]len-of-logic.substitute-list)
(%use (%instance (%thm len-of-strip-firsts)
(x (logic.strip-function-args (logic.=lhses (logic.strip-conclusions proofs))))))
(%use (%instance (%thm len-of-logic.substitute-list)
(x (rw.hyp-list-terms (rw.rule->hyps rule))))))
(local (%enable default
lemma-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1
lemma2-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1))
;; Speed hack
(local (%disable default
consp-when-memberp-of-logic.sigmap
consp-when-memberp-of-logic.sigma-atblp
all-equalp-of-subsetp-when-all-equalp))
(%autoprove logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1)
(%autoprove logic.conclusion-of-rw.compile-crewrite-rule-trace-lemma1)
(%autoprove logic.proofp-of-rw.compile-crewrite-rule-trace-lemma1
(%enable default rw.rule-env-okp)))
(defsection rw.compile-crewrite-rule-trace-lemma2
(defthmd lemma-2-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma2
;; BOZO unlocalize. We use lemma-1 from lemma1.
(implies (equal (logic.substitute-list (rw.hyp-list-terms (rw.rule->hyps rule)) sigma)
(strip-firsts (logic.strip-function-args (logic.=lhses (logic.vrhses (logic.strip-conclusions proofs))))))
(equal (len proofs)
(len (rw.rule->hyps rule))))
:hints(("Goal"
:in-theory (disable len-of-strip-firsts len-of-logic.substitute-list)
:use ((:instance len-of-strip-firsts
(x (logic.strip-function-args (logic.=lhses (logic.vrhses (logic.strip-conclusions proofs))))))
(:instance len-of-logic.substitute-list
(x (rw.hyp-list-terms (rw.rule->hyps rule))))))))
(%autoadmit rw.compile-crewrite-rule-trace-lemma2)
(local (%enable default
rw.compile-crewrite-rule-trace-lemma2
rw.rule-clause
redefinition-of-logic.term-list-formulas))
(%autoprove lemma-2-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma2
(%disable default
len-of-strip-firsts
len-of-logic.substitute-list
[outside]len-of-strip-firsts
[outside]len-of-logic.substitute-list)
(%use (%instance (%thm len-of-strip-firsts)
(x (logic.strip-function-args (logic.=lhses (logic.vrhses (logic.strip-conclusions proofs)))))))
(%use (%instance (%thm len-of-logic.substitute-list)
(x (rw.hyp-list-terms (rw.rule->hyps rule))))))
(local (%enable default
lemma-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma1
lemma-2-for-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma2))
(local (%disable default
consp-when-memberp-of-logic.sigmap
consp-when-memberp-of-logic.sigma-atblp
all-equalp-of-subsetp-when-all-equalp))
(%autoprove forcing-logic.appealp-of-rw.compile-crewrite-rule-trace-lemma2)
(%autoprove forcing-logic.conclusion-of-rw.compile-crewrite-rule-trace-lemma2)
(%autoprove forcing-logic.proofp-of-rw.compile-crewrite-rule-trace-lemma2
(%enable default rw.rule-env-okp)))
(defsection rw.compile-crewrite-rule-trace-lemma1-okp
(%autoadmit rw.compile-crewrite-rule-trace-lemma1-okp)
(%autoprove booleanp-of-rw.compile-crewrite-rule-trace-lemma1-okp
(%enable default rw.compile-crewrite-rule-trace-lemma1-okp))
(%autoprove rw.compile-crewrite-rule-trace-lemma1-okp-of-logic.appeal-identity
(%enable default rw.compile-crewrite-rule-trace-lemma1-okp))
(local (%enable default backtracking-logic.formula-atblp-rules))
(local (%disable default
forcing-logic.formula-atblp-rules
forcing-lookup-of-logic.function-name-free))
(%autoprove lemma-1-for-soundness-of-rw.compile-crewrite-rule-trace-lemma1-okp
(%enable default rw.compile-crewrite-rule-trace-lemma1-okp))
(%autoprove lemma-2-for-soundness-of-rw.compile-crewrite-rule-trace-lemma1-okp
(%enable default rw.compile-crewrite-rule-trace-lemma1-okp))
(%autoprove forcing-soundness-of-rw.compile-crewrite-rule-trace-lemma1-okp
(%enable default
lemma-1-for-soundness-of-rw.compile-crewrite-rule-trace-lemma1-okp
lemma-2-for-soundness-of-rw.compile-crewrite-rule-trace-lemma1-okp)
(%use (%instance (%thm forcing-logic.provablep-when-logic.proofp)
(x (rw.compile-crewrite-rule-trace-lemma1 (first (logic.extras x))
(second (logic.extras x))
(logic.provable-list-witness
(logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))))
(%auto :strategy (cleanup split crewrite))
(%enable default rw.compile-crewrite-rule-trace-lemma1-okp)
(%auto :strategy (cleanup split crewrite))))
(defsection rw.compile-crewrite-rule-trace-lemma2-okp
(%autoadmit rw.compile-crewrite-rule-trace-lemma2-okp)
(%autoprove booleanp-of-rw.compile-crewrite-rule-trace-lemma2-okp
(%enable default rw.compile-crewrite-rule-trace-lemma2-okp))
(%autoprove rw.compile-crewrite-rule-trace-lemma2-okp-of-logic.appeal-identity
(%enable default rw.compile-crewrite-rule-trace-lemma2-okp))
(%autoprove lemma-1-for-soundness-of-rw.compile-crewrite-rule-trace-lemma2-okp
(%enable default rw.compile-crewrite-rule-trace-lemma2-okp))
(%autoprove lemma-2-for-soundness-of-rw.compile-crewrite-rule-trace-lemma2-okp
(%enable default rw.compile-crewrite-rule-trace-lemma2-okp))
(%autoprove forcing-soundness-of-rw.compile-crewrite-rule-trace-lemma2-okp
(%enable default
lemma-1-for-soundness-of-rw.compile-crewrite-rule-trace-lemma2-okp
lemma-2-for-soundness-of-rw.compile-crewrite-rule-trace-lemma2-okp)
(%use (%instance (%thm forcing-logic.provablep-when-logic.proofp)
(x (rw.compile-crewrite-rule-trace-lemma2 (first (logic.extras x))
(second (logic.extras x))
(third (logic.extras x))
(logic.provable-list-witness
(logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))))
(%auto :strategy (cleanup split crewrite))
(%enable default rw.compile-crewrite-rule-trace-lemma2-okp)
(%auto :strategy (cleanup split crewrite))))
|