1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "fuse")
(%interactive)
(defthm equal-of-first-index-and-n-when-len-alt
;; BOZO put this somewhere better.
(implies (equal (len x) n)
(equal (equal n (first-index a x))
(not (memberp a x)))))
(%autoprove equal-of-first-index-and-n-when-len-alt
(%use (%instance (%thm equal-of-first-index-and-n-when-len))))
(%defderiv build.dual-substitution-lemma-1)
(%autoadmit build.flag-dual-substitution)
(%autoadmit build.dual-substitution)
(%autoadmit build.dual-substitution-list)
(%autoprove definition-of-build.dual-substitution
(%restrict default build.flag-dual-substitution (equal x 'x))
(%enable default
build.dual-substitution
build.dual-substitution-list))
(%autoprove definition-of-build.dual-substitution-list
(%restrict default build.flag-dual-substitution (equal x 'x))
(%enable default
build.dual-substitution
build.dual-substitution-list))
(%autoprove build.flag-dual-substitution-of-term-removal
(%enable default build.dual-substitution))
(%autoprove build.flag-dual-substitution-of-list-removal
(%enable default build.dual-substitution-list))
(%autoprove build.dual-substitution-under-iff
(%restrict default definition-of-build.dual-substitution (equal x 'x)))
(%autoprove build.dual-substitution-list-when-not-consp
(%restrict default definition-of-build.dual-substitution-list (equal x 'x)))
(%autoprove build.dual-substitution-list-of-cons
(%restrict default definition-of-build.dual-substitution-list (equal x '(cons a x))))
(%autoprove len-of-build.dual-substitution-list
(%cdr-induction x))
(defmacro %build.flag-dual-substitution-induction (flag x vars proofs)
`(%induct (rank ,x)
((and (equal ,flag 'term)
(logic.constantp ,x))
nil)
((and (equal ,flag 'term)
(logic.variablep ,x))
nil)
((and (equal ,flag 'term)
(logic.functionp ,x))
(((,flag 'list)
(,x (logic.function-args ,x))
(,vars ,vars)
(,proofs ,proofs))))
((and (equal ,flag 'term)
(logic.lambdap ,x))
(((,flag 'list)
(,x (logic.lambda-actuals ,x))
(,vars ,vars)
(,proofs ,proofs))
((,flag 'term)
(,x (logic.lambda-body ,x))
(,vars (logic.lambda-formals ,x))
(,proofs (build.dual-substitution-list (logic.lambda-actuals ,x) ,vars ,proofs)))))
((and (equal ,flag 'term)
(not (logic.constantp ,x))
(not (logic.variablep ,x))
(not (logic.functionp ,x))
(not (logic.lambdap ,x)))
nil)
((and (not (equal ,flag 'term))
(consp ,x))
(((,flag 'term) (,x (car ,x)) (,vars ,vars) (,proofs ,proofs))
((,flag 'list) (,x (cdr ,x)) (,vars ,vars) (,proofs ,proofs))))
((and (not (equal ,flag 'term))
(not (consp ,x)))
nil)))
(%autoprove lemma-for-forcing-logic.appealp-of-build.dual-substitution
;; with manual induction -- 100m; with autoinduction -- 176m
(%build.flag-dual-substitution-induction flag x vars proofs)
(%auto :strategy (cleanup urewrite split))
(%restrict default definition-of-build.dual-substitution (equal x 'x))
(%auto :strategy (cleanup urewrite split)))
(%autoprove forcing-logic.appealp-of-build.dual-substitution
(%use (%instance (%thm lemma-for-forcing-logic.appealp-of-build.dual-substitution)
(flag 'term))))
(%autoprove forcing-logic.appealp-listp-of-build.dual-substitution-list
(%use (%instance (%thm lemma-for-forcing-logic.appealp-of-build.dual-substitution)
(flag 'list))))
(%autoprove forcing-logic.conclusion-of-build.dual-substitution
(%use (%instance (%thm lemma-for-forcing-logic.appealp-of-build.dual-substitution)
(flag 'term))))
(%autoprove forcing-logic.strip-conclusions-of-build.dual-substitution-list
(%use (%instance (%thm lemma-for-forcing-logic.appealp-of-build.dual-substitution)
(flag 'list))))
(%autoprove lemma-for-forcing-logic.proofp-of-build.dual-substitution
;; (%build.flag-dual-substitution-induction flag x vars proofs)
(%autoinduct build.flag-dual-substitution)
(%auto :strategy (cleanup urewrite split))
(%restrict default definition-of-build.dual-substitution (equal x 'x))
(%auto :strategy (cleanup urewrite split)))
(%autoprove forcing-logic.proofp-of-build.dual-substitution
(%use (%instance (%thm lemma-for-forcing-logic.proofp-of-build.dual-substitution)
(flag 'term)))
(%auto :strategy (cleanup urewrite split)))
(%autoprove forcing-logic.proof-listp-of-build.dual-substitution-list
(%use (%instance (%thm lemma-for-forcing-logic.proofp-of-build.dual-substitution)
(flag 'list)))
(%auto :strategy (cleanup urewrite split)))
(defsection build.lambda-pequal-by-args
(%autoadmit build.lambda-pequal-by-args)
(local (%enable default build.lambda-pequal-by-args))
(%autoprove build.lambda-pequal-by-args-under-iff)
(%autoprove forcing-logic.appealp-of-build.lambda-pequal-by-args)
(%autoprove forcing-logic.conclusion-of-build.lambda-pequal-by-args)
(%autoprove forcing-logic.proofp-of-build.lambda-pequal-by-args))
(defsection build.lambda-pequal-by-args-okp
(%autoadmit build.lambda-pequal-by-args-okp)
(%autoprove booleanp-of-build.lambda-pequal-by-args-okp
(%enable default build.lambda-pequal-by-args-okp))
(%autoprove build.lambda-pequal-by-args-okp-of-logic.appeal-identity
(%enable default build.lambda-pequal-by-args-okp))
(local (%enable default backtracking-logic.formula-atblp-rules))
(local (%disable default
forcing-logic.formula-atblp-rules
forcing-lookup-of-logic.function-name-free))
(%autoprove lemma-1-for-soundness-of-build.lambda-pequal-by-args-okp
(%enable default build.lambda-pequal-by-args-okp))
(%autoprove lemma-2-for-soundness-of-build.lambda-pequal-by-args-okp
(%enable default build.lambda-pequal-by-args-okp))
(%autoprove forcing-soundness-of-build.lambda-pequal-by-args-okp
(%enable default
lemma-1-for-soundness-of-build.lambda-pequal-by-args-okp
lemma-2-for-soundness-of-build.lambda-pequal-by-args-okp)
(%use (%instance (%thm forcing-logic.provablep-when-logic.proofp)
(x (build.lambda-pequal-by-args
(first (logic.extras x))
(second (logic.extras x))
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))))
(%auto :strategy (cleanup split crewrite))
(%enable default build.lambda-pequal-by-args-okp)
(%auto :strategy (cleanup split crewrite))))
|