1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "eqtrace-compiler")
(include-book "contradiction-bldr")
(include-book "update-clause-bldr")
(include-book "disjoined-update-clause-bldr")
(include-book "update-clause-iff-bldr")
(include-book "lambda-2")
(include-book "aux-split-negative")
(include-book "basic-if-lemmas")
(include-book "urewrite-if-lemmas")
(include-book "crewrite-if-lemmas")
(include-book "crewrite-if-lemmas2")
(%interactive)
(%autoadmit level5.step-okp)
(encapsulate
()
(local (%enable default level5.step-okp))
(%autoprove soundness-of-level5.step-okp)
(%autoprove level5.step-okp-when-level4.step-okp
(%forcingp nil)
(%auto)
(%enable default level4.step-okp)
(%auto)
(%enable default level3.step-okp)
(%auto)
(%enable default level2.step-okp)
(%auto)
(%enable default logic.appeal-step-okp))
(%autoprove level5.step-okp-when-not-consp
(%enable default logic.method)))
(encapsulate
()
(local (%disable default forcing-true-listp-of-logic.subproofs))
(%autoadmit level5.flag-proofp-aux))
(%autoadmit level5.proofp-aux)
(%autoadmit level5.proof-listp-aux)
(%autoprove definition-of-level5.proofp-aux
(%enable default level5.proofp-aux level5.proof-listp-aux)
(%restrict default level5.flag-proofp-aux (equal x 'x)))
(%autoprove definition-of-level5.proof-listp-aux
(%enable default level5.proofp-aux level5.proof-listp-aux)
(%restrict default level5.flag-proofp-aux (equal x 'x)))
(%autoprove level5.proofp-aux-when-not-consp (%restrict default definition-of-level5.proofp-aux (equal x 'x)))
(%autoprove level5.proof-listp-aux-when-not-consp (%restrict default definition-of-level5.proof-listp-aux (equal x 'x)))
(%autoprove level5.proof-listp-aux-of-cons (%restrict default definition-of-level5.proof-listp-aux (equal x '(cons a x))))
(%autoprove lemma-for-booleanp-of-level5.proofp-aux
(%logic.appeal-induction flag x)
(%disable default forcing-true-listp-of-logic.subproofs)
(%auto)
(%restrict default definition-of-level5.proofp-aux (equal x 'x)))
(%autoprove booleanp-of-level5.proofp-aux (%use (%instance (%thm lemma-for-booleanp-of-level5.proofp-aux) (flag 'proof))))
(%autoprove booleanp-of-level5.proof-listp-aux (%use (%instance (%thm lemma-for-booleanp-of-level5.proofp-aux) (flag 'list))))
(%deflist level5.proof-listp-aux (x axioms thms atbl)
(level5.proofp-aux x axioms thms atbl))
(%autoprove lemma-for-logic.provablep-when-level5.proofp-aux
(%logic.appeal-induction flag x)
(%disable default forcing-true-listp-of-logic.subproofs)
(%auto :strategy (cleanup urewrite split))
(%restrict default definition-of-level5.proofp-aux (equal x 'x))
(%auto :strategy (cleanup urewrite split)))
(%autoprove logic.provablep-when-level5.proofp-aux
(%use (%instance (%thm lemma-for-logic.provablep-when-level5.proofp-aux) (flag 'proof))))
(%autoprove logic.provable-listp-when-level5.proof-listp-aux
(%use (%instance (%thm lemma-for-logic.provablep-when-level5.proofp-aux) (flag 'list))))
(%autoprove lemma-for-level5.proofp-aux-when-logic.proofp
(%logic.appeal-induction flag x)
(%disable default forcing-true-listp-of-logic.subproofs)
(%auto)
(%restrict default definition-of-level5.proofp-aux (equal x 'x))
(%restrict default definition-of-logic.proofp (equal x 'x)))
(%autoprove level5.proofp-aux-when-logic.proofp
(%use (%instance (%thm lemma-for-level5.proofp-aux-when-logic.proofp) (flag 'proof))))
(%autoprove level5.proof-listp-aux-when-logic.proof-listp
(%use (%instance (%thm lemma-for-level5.proofp-aux-when-logic.proofp) (flag 'list))))
(%autoprove forcing-level5.proofp-aux-of-logic.provable-witness
(%enable default level5.proofp-aux-when-logic.proofp))
(%autoadmit level5.proofp)
(%autoprove booleanp-of-level5.proofp
(%enable default level5.proofp))
(%autoprove logic.provablep-when-level5.proofp
(%enable default level5.proofp))
(defsection level5-transition
(%install-new-proofp level5.proofp)
(%auto)
(%qed-install))
(%switch-builder rw.eqtrace-bldr rw.eqtrace-bldr-high)
(%switch-builder rw.eqtrace-contradiction-bldr rw.eqtrace-contradiction-bldr-high)
(%switch-builder clause.update-clause-bldr clause.update-clause-bldr-high)
(%switch-builder clause.update-clause-iff-bldr clause.update-clause-iff-bldr-high)
(%switch-builder clause.disjoined-update-clause-bldr clause.disjoined-update-clause-bldr-high)
(%switch-builder build.lambda-pequal-by-args build.lambda-pequal-by-args-high)
(%switch-builder build.disjoined-lambda-pequal-by-args build.disjoined-lambda-pequal-by-args-high)
(%switch-builder clause.aux-split-negative-1-bldr clause.aux-split-negative-1-bldr-high)
(%switch-builder clause.aux-split-negative-2-bldr clause.aux-split-negative-2-bldr-high)
(%switch-builder rw.iff-implies-equal-if-specialcase-nil-bldr rw.iff-implies-equal-if-specialcase-nil-bldr-high)
(%switch-builder rw.iff-implies-iff-if-specialcase-nil-bldr rw.iff-implies-iff-if-specialcase-nil-bldr-high)
(%switch-builder rw.iff-implies-equal-if-specialcase-t-bldr rw.iff-implies-equal-if-specialcase-t-bldr-high)
(%switch-builder rw.iff-implies-iff-if-specialcase-t-bldr rw.iff-implies-iff-if-specialcase-t-bldr-high)
(%switch-builder rw.disjoined-iff-implies-equal-if-specialcase-nil-bldr rw.disjoined-iff-implies-equal-if-specialcase-nil-bldr-high)
(%switch-builder rw.disjoined-iff-implies-iff-if-specialcase-nil-bldr rw.disjoined-iff-implies-iff-if-specialcase-nil-bldr-high)
(%switch-builder rw.disjoined-iff-implies-equal-if-specialcase-t-bldr rw.disjoined-iff-implies-equal-if-specialcase-t-bldr-high)
(%switch-builder rw.disjoined-iff-implies-iff-if-specialcase-t-bldr rw.disjoined-iff-implies-iff-if-specialcase-t-bldr-high)
(%switch-builder rw.iff-implies-equal-if-bldr rw.iff-implies-equal-if-bldr-high)
(%switch-builder rw.iff-implies-iff-if-bldr rw.iff-implies-iff-if-bldr-high)
(%switch-builder rw.equal-of-if-x-y-y-bldr rw.equal-of-if-x-y-y-bldr-high)
(%switch-builder rw.iff-of-if-x-y-y-bldr rw.iff-of-if-x-y-y-bldr-high)
(%switch-builder rw.disjoined-iff-implies-equal-if-bldr rw.disjoined-iff-implies-equal-if-bldr-high)
(%switch-builder rw.disjoined-iff-implies-iff-if-bldr rw.disjoined-iff-implies-iff-if-bldr-high)
(%switch-builder rw.disjoined-equal-of-if-x-y-y-bldr rw.disjoined-equal-of-if-x-y-y-bldr-high)
(%switch-builder rw.disjoined-iff-of-if-x-y-y-bldr rw.disjoined-iff-of-if-x-y-y-bldr-high)
;; At this point we laso switch to using a split limit, due to the tradeoffs in proof sizes.
(%splitlimit 8)
(%finish "level5")
(%save-events "level5.events")
;; Clear out the thmfiles table since we'll use the saved image from now on.
(ACL2::table tactic-harness 'thmfiles nil)
|