1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "eqtrace-okp")
(%interactive)
(%defderiv rw.negative-iff-eqtrace-nhyp-bldr-lemma-1 :omit-okp t)
(defsection rw.negative-iff-eqtrace-nhyp-bldr
(%autoadmit rw.negative-iff-eqtrace-nhyp-bldr)
(local (%enable default
rw.negative-iff-eqtrace
rw.negative-iff-eqtrace-nhyp-bldr
theorem-not-when-nil
theorem-iff-t-when-not-nil
logic.term-formula))
(local (%disable default
forcing-equal-of-logic.pequal-rewrite-two
forcing-equal-of-logic.pequal-rewrite
forcing-equal-of-logic.por-rewrite-two
forcing-equal-of-logic.por-rewrite
forcing-equal-of-logic.pnot-rewrite-two
forcing-equal-of-logic.pnot-rewrite))
(%autoprove rw.negative-iff-eqtrace-nhyp-bldr-under-iff)
(%autoprove forcing-logic.appealp-of-rw.negative-iff-eqtrace-nhyp-bldr)
(%autoprove forcing-logic.conclusion-of-rw.negative-iff-eqtrace-nhyp-bldr)
(%autoprove forcing-logic.proofp-of-rw.negative-iff-eqtrace-nhyp-bldr))
(defsection rw.negative-iff-eqtrace-bldr
(%autoadmit rw.negative-iff-eqtrace-bldr)
(local (%enable default
rw.negative-iff-eqtrace-bldr
rw.negative-iff-eqtrace-okp
rw.hypbox-formula
rw.eqtrace-formula))
(%autoprove rw.negative-iff-eqtrace-bldr-under-iff)
(%autoprove forcing-logic.appealp-of-rw.negative-iff-eqtrace-bldr)
(%autoprove forcing-logic.conclusion-of-rw.negative-iff-eqtrace-bldr)
(%autoprove forcing-logic.proofp-of-rw.negative-iff-eqtrace-bldr))
(%ensure-exactly-these-rules-are-missing "../../rewrite/assms/negative-iff-eqtrace-bldr"
;; omit-ok stuff
booleanp-of-rw.negative-iff-eqtrace-nhyp-bldr-lemma-1-okp
rw.negative-iff-eqtrace-nhyp-bldr-lemma-1-okp-of-logic.appeal-identity
lemma-1-for-soundness-of-rw.negative-iff-eqtrace-nhyp-bldr-lemma-1-okp
lemma-2-for-soundness-of-rw.negative-iff-eqtrace-nhyp-bldr-lemma-1-okp
forcing-soundness-of-rw.negative-iff-eqtrace-nhyp-bldr-lemma-1-okp)
|