1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "aux-split-double-negate")
(include-book "aux-split-negated-if")
(include-book "aux-split-positive-if")
(include-book "aux-split-negative-default")
(include-book "aux-split-positive-default")
(%interactive)
(local (%disable default
type-set-like-rules
expensive-arithmetic-rules
expensive-arithmetic-rules-two
expensive-term/formula-inference
expensive-subsetp-rules
unusual-consp-rules))
(%autoadmit clause.aux-split-bldr)
(%autoprove lemma-for-forcing-logic.appealp-of-clause.aux-split-bldr
(%autoinduct clause.aux-split)
(%enable default clause.aux-split-goal-when-not-consp-of-todo)
(%auto :strategy (cleanup split urewrite crewrite))
(%restrict default clause.aux-split-bldr (equal todo 'todo))
(%restrict default clause.aux-split (equal todo 'todo))
(%restrict default clause.split-count-list (equal x 'todo))
(%auto :strategy (cleanup split urewrite crewrite)))
(%autoprove forcing-logic.appealp-of-clause.aux-split-bldr
(%use (%instance (%thm lemma-for-forcing-logic.appealp-of-clause.aux-split-bldr))))
(%autoprove lemma-for-forcing-logic.proofp-of-clause.aux-split-bldr
(%use (%instance (%thm lemma-for-forcing-logic.appealp-of-clause.aux-split-bldr))))
(local (%max-proof-size 800000000))
(%autoprove forcing-logic.proofp-of-clause.aux-split-bldr
(%autoinduct clause.aux-split)
(%enable default
clause.aux-split-goal-when-not-consp-of-todo
lemma-for-forcing-logic.proofp-of-clause.aux-split-bldr)
(%auto :strategy (cleanup split urewrite crewrite))
(%restrict default clause.split-count-list (equal x 'todo))
(%restrict default clause.aux-split-bldr (equal todo 'todo))
(%restrict default clause.aux-split (equal todo 'todo))
(%auto :strategy (cleanup split urewrite crewrite)))
(%autoprove forcing-logic.conclusion-of-clause.aux-split-bldr
(%use (%instance (%thm lemma-for-forcing-logic.proofp-of-clause.aux-split-bldr)))
(%enable default clause.aux-split-goal))
|