1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "aux-split")
(%interactive)
;; speed hint
(local (%disable default
AGGRESSIVE-EQUAL-OF-LOGIC.PNOTS
AGGRESSIVE-EQUAL-OF-LOGIC.PEQUALS
AGGRESSIVE-EQUAL-OF-LOGIC.PORS
FORCING-LOGIC.FUNCTION-OF-LOGIC.FUNCTION-NAME-AND-LOGIC.FUNCTION-ARGS-FREE
LOGIC.TERM-LISTP-OF-SUBSETP-WHEN-LOGIC.TERM-LISTP
LOGIC.TERM-LISTP-WHEN-LOGIC.VARIABLE-LISTP-CHEAP
FORCING-LOGIC.DISJOIN-FORMULAS-OF-TWO-ELEMENT-LIST
LOGIC.DISJOIN-FORMULAS-WHEN-NOT-CONSP
CONSP-WHEN-LOGIC.LAMBDAP-CHEAP
LOGIC.FUNCTIONP-WHEN-LOGIC.LAMBDAP-CHEAP
LOGIC.TERMP-WHEN-INVALID-MAYBE-EXPENSIVE
logic.termp-when-logic.formulap
same-length-prefixes-equal-cheap
expensive-arithmetic-rules
expensive-arithmetic-rules-two
unusual-subsetp-rules
car-when-not-consp
cdr-when-not-consp
type-set-like-rules
unusual-memberp-rules
))
(%autoadmit clause.aux-split-positive-if)
(%autoprove forcing-logic.appealp-of-clause.aux-split-positive-if
(%enable default
logic.term-formula
clause.aux-split-goal
clause.aux-split-positive-if))
(%autoprove forcing-logic.conclusion-of-clause.aux-split-positive-if
(%enable default
logic.term-formula
clause.aux-split-goal
clause.aux-split-positive-if))
(%autoprove forcing-logic.proofp-of-clause.aux-split-positive-if
(%enable default
logic.term-formula
clause.aux-split-goal
clause.aux-split-positive-if))
|