1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "depth-2-deepest")
(%interactive)
(%autoadmit clause.special-assignment)
(%autoprove clause.special-assignment-when-not-consp
(%restrict default clause.special-assignment (equal assignments 'assignments)))
(%autoprove clause.special-assignment-of-cons
(%restrict default clause.special-assignment (equal assignments '(cons a assignments))))
(%autoprove memberp-of-clause.special-assignment
(%cdr-induction assignments))
(%autoprove forcing-logic.termp-of-clause.deepest
(%cdr-induction x))
(%autoprove clause.special-assignment-of-clause.multifactor
(%cdr-induction assignments)
(%enable default clause.depth-list-redefinition)
(%disable default
expensive-arithmetic-rules
expensive-arithmetic-rules-two
type-set-like-rules
same-length-prefixes-equal-cheap)
(%cheapen default
clause.depth-when-clause.simple-termp
clause.depth-list-when-clause.simple-term-listp
clause.simple-termp-when-memberp-of-clause.simple-term-listp
clause.simple-term-listp-of-cdr-when-clause.simple-term-listp
clause.simple-termp-of-car-when-clause.simple-term-listp)
(%auto)
(%enable default
expensive-arithmetic-rules-two
expensive-arithmetic-rules
type-set-like-rules))
(%autoadmit clause.deepest-after-factoring)
(%autoprove clause.deepest-after-factoring-when-not-consp
(%restrict default clause.deepest-after-factoring (equal x 'x)))
(%autoprove clause.deepest-after-factoring-of-cons
(%restrict default clause.deepest-after-factoring (equal x '(cons a x))))
(%autoprove forcing-logic.termp-of-clause.deepest-after-factoring
(%cdr-induction x))
(%autoprove memberp-of-clause.deepest-after-factoring
(%cdr-induction x))
(%autoprove clause.deepest-of-clause.factor-list
(%cdr-induction x)
(%disable default
expensive-arithmetic-rules
expensive-arithmetic-rules-two
type-set-like-rules))
(%autoprove disjoint-from-nonep-of-clause.term-paths-of-clause.deepest-after-factoring
(%disable default disjoint-from-nonep-of-clause.term-paths-when-memberp)
(%use (%instance (%thm disjoint-from-nonep-of-clause.term-paths-when-memberp)
(a (clause.deepest-after-factoring x assignment))
(x x))))
(%ensure-exactly-these-rules-are-missing "../../clauses/if-lifting/depth")
|