1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "terms")
(%interactive)
(%autoadmit logic.formulap)
(%autoadmit logic.pequal)
(%autoadmit logic.pnot)
(%autoadmit logic.por)
(%noexec logic.pequal)
(%noexec logic.pnot)
(%noexec logic.por)
(%autoadmit logic.fmtype)
(%autoadmit logic.=lhs)
(%autoadmit logic.=rhs)
(%autoadmit logic.~arg)
(%autoadmit logic.vlhs)
(%autoadmit logic.vrhs)
(defmacro %logic.raw-formulap-induction (x)
`(%induct (rank ,x)
((equal (first ,x) 'pequal*)
nil)
((equal (first ,x) 'pnot*)
(((,x (second ,x)))))
((equal (first ,x) 'por*)
(((,x (second ,x)))
((,x (third ,x)))))
((and (not (equal (first ,x) 'pequal*))
(not (equal (first ,x) 'pnot*))
(not (equal (first ,x) 'por*)))
nil)))
(%autoprove booleanp-of-logic.formulap
(%logic.raw-formulap-induction x)
(%restrict default logic.formulap (equal x 'x))
(%auto :strategy (cleanup split crewrite)))
(%autoprove logic.formulap-when-not-consp
(%restrict default logic.formulap (equal x 'x))
(%auto :strategy (cleanup split crewrite)))
(%autoprove lemma-1-for-logic.formulap-when-logic.termp
(%restrict default logic.formulap (equal x 'x)))
(%autoprove lemma-2-for-logic.formulap-when-logic.termp
(%restrict default definition-of-logic.termp (equal x 'x))
(%enable default logic.constantp))
(%autoprove logic.formulap-when-logic.termp
(%use (%instance (%thm lemma-1-for-logic.formulap-when-logic.termp)))
(%use (%instance (%thm lemma-2-for-logic.formulap-when-logic.termp))))
(%autoprove logic.termp-when-logic.formulap)
|